全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Triple-Negative Breast Cancer: An Update on Neoadjuvant Clinical Trials

DOI: 10.1155/2012/385978

Full-Text   Cite this paper   Add to My Lib

Abstract:

Triple-negative breast cancer (TNBC) is an aggressive malignancy with a poor prognosis despite the high rates of response to chemotherapy. This scenario highlights the need to develop novel therapies and/or treatment strategies to reduce the mortality associated with TNBC. The neoadjuvant setting provides a model for rapid assessment of treatment efficacy with smaller patient accruals and over shorter periods of time compared to the traditional adjuvant setting. In addition, a clear surrogate endpoint of improved survival, known as pathologic complete response, already exists in this setting. Here, we review current data from completed and ongoing neoadjuvant clinical trials for TNBC. 1. Introduction Triple-negative breast cancer (TNBC) is defined histologically as invasive carcinoma of the breast that lacks staining for estrogen receptor, progesterone receptor, and HER2/neu. Approximately 15–20% of breast cancers illustrate this phenotype [1]. TNBC is associated with high proliferative rates, early recurrence, and poor survival rates. This aggressive disease is insensitive to widely used targeted therapies such as trastuzumab and endocrine therapies, tamoxifen and aromatase inhibitors, which have been effective at reducing breast cancer mortality. Younger women and women of African descent have a high prevalence of TNBC [1]. There are limited and often ineffective therapeutic treatment options for patients with stage IV TNBC. 2. The Concept of Neoadjuvant Chemotherapy The use of neoadjuvant chemotherapy for patients with locally advanced breast cancer has increased significantly over several decades. Neoadjuvant chemotherapy was first used in patients with unresectable or marginally resectable breast cancer [2, 3]. The results from initial studies showed high rates of tumor response and regression. Additional clinical trials were performed with the primary objective of determining whether breast conserving surgery could be offered after neoadjuvant chemotherapy to patients who would have traditionally required mastectomy. The National Surgical Adjuvant Breast and Bowel Project (NSABP) B-18 study randomized 1,523 women with operable breast cancer to receive 4 cycles of adriamycin and cyclophosphamide either in the preoperative or postoperative setting [4]. This study showed that neoadjuvant chemotherapy improved breast conservation rates (67.8% versus 59.8%). Although there was no difference in overall survival (OS) between neoadjuvant and adjuvant therapy groups, patients treated in the neoadjuvant setting whose tumors obtained a pathologic complete

References

[1]  L. A. Carey, C. M. Perou, C. A. Livasy et al., “Race, breast cancer subtypes, and survival in the Carolina breast cancer study,” Journal of the American Medical Association, vol. 295, no. 21, pp. 2492–2502, 2006.
[2]  L. M. Koplin and T. X. O'Connell, “A new approach to the management of primary unresectable carcinoma of the breast: is radiation therapy necessary?” American Journal of Clinical Oncology, vol. 6, no. 5, pp. 599–604, 1983.
[3]  L. A. Newman, “Surgical issues and preoperative systemic therapy,” Cancer Treatment and Research, vol. 141, pp. 79–98, 2008.
[4]  B. Fisher, A. Brown, E. Mamounas et al., “Effect of preoperative chemotherapy on local-regional disease in women with operable breast cancer: findings from national surgical adjuvant breast and bowel project B-18,” Journal of Clinical Oncology, vol. 16, no. 8, pp. 2672–2685, 1998.
[5]  C. Liedtke, C. Mazouni, K. R. Hess et al., “Response to neoadjuvant therapy and long-term survival in patients with triple-negative breast cancer,” Journal of Clinical Oncology, vol. 26, no. 8, pp. 1275–1281, 2008.
[6]  L. A. Carey, E. C. Dees, L. Sawyer et al., “The triple negative paradox: primary tumor chemosensitivity of breast cancer subtypes,” Clinical Cancer Research, vol. 13, no. 8, pp. 2329–2334, 2007.
[7]  C. M. Perou, T. S?rile, M. B. Eisen et al., “Molecular portraits of human breast tumours,” Nature, vol. 406, no. 6797, pp. 747–752, 2000.
[8]  T. Sorlie, C. M. Perou, R. Tibshirani et al., “Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 19, pp. 10869–10874, 2001.
[9]  V. Guarneri, K. Broglio, S. W. Kau et al., “Prognostic value of pathologic complete response after primary chemotherapy in relation to hormone receptor status and other factors,” Journal of Clinical Oncology, vol. 24, no. 7, pp. 1037–1044, 2006.
[10]  R. Rouzier, C. M. Perou, W. F. Symmans et al., “Breast cancer molecular subtypes respond differently to preoperative chemotherapy,” Clinical Cancer Research, vol. 11, no. 16, pp. 5678–5685, 2005.
[11]  H. D. Bear, S. Anderson, R. E. Smith et al., “Sequential preoperative or postoperative docetaxel added to preoperative doxorubicin plus cyclophosphamide for operable breast cancer: national surgical adjuvant breast and bowel project protocol B-27,” Journal of Clinical Oncology, vol. 24, no. 13, pp. 2019–2027, 2006.
[12]  D. P. Silver, A. L. Richardson, A. C. Eklund et al., “Efficacy of neoadjuvant Cisplatin in triple-negative breast cancer,” Journal of Clinical Oncology, vol. 28, no. 7, pp. 1145–1153, 2010.
[13]  T. Byrski, J. Gronwald, T. Huzarski et al., “Pathologic complete response rates in young women with BRCA1-positive breast cancers after neoadjuvant chemotherapy,” Journal of Clinical Oncology, vol. 28, no. 3, pp. 375–379, 2010.
[14]  H. D. Bear, et al., “The effect on pCR of bevacizumab and/or antimetabolites added to standard neoadjuvant chemotherapy: NSABP protocol B-40,” Journal of Clinical Oncology, vol. 29, abstract LBA1005, 2011.
[15]  E. Alba, et al., “Chemotherapy (CT) with or without carboplatin as neoadjuvant treatment in patients with basal-like breast cancer: GEICAM 2006-03-A multicenter, randomized phase II study,” Journal of Clinical Oncology, vol. 29, abstract 1015, 2011.
[16]  A. B. Zelnak, et al., “Final results from randomized phase II trial of preoperative docetaxel (D) and capecitabine (C) given sequentially or concurrently for HER2-negative breast cancers,” Journal of Clinical Oncology, vol. 29, Abstract 1118, 2011.
[17]  G. Von Minckwitz, S. Kümmel, P. Vogel et al., “Neoadjuvant vinorelbine-capecitabine versus docetaxel-doxorubicin- cyclophosphamide in early nonresponsive breast cancer: phase III randomized gepartrio trial,” Journal of the National Cancer Institute, vol. 100, no. 8, pp. 542–551, 2008.
[18]  J. Huober, G. Von Minckwitz, C. Denkert et al., “Effect of neoadjuvant anthracycline-taxane-based chemotherapy in different biological breast cancer phenotypes: overall results from the GeparTrio study,” Breast Cancer Research and Treatment, vol. 124, no. 1, pp. 133–140, 2010.
[19]  J. Baselga, M. Zambetti, A. Llombart-Cussac et al., “Phase II genomics study of ixabepilone as neoadjuvant treatment for breast cancer,” Journal of Clinical Oncology, vol. 27, no. 4, pp. 526–534, 2009.
[20]  J. O'Shaughnessy, D. Miles, S. Vukelia et al., “Superior survival with capecitabine plus docetaxel combination therapy in anthracycline-pretreated patients with advanced breast cancer: phase III trial results,” Journal of Clinical Oncology, vol. 20, no. 12, pp. 2812–2823, 2002.
[21]  K. S. Albain, S. M. Nag, G. Calderillo-Ruiz et al., “Gemcitabine plus paclitaxel versus paclitaxel monotherapy in patients with metastatic breast cancer and prior anthracycline treatment,” Journal of Clinical Oncology, vol. 26, no. 24, pp. 3950–3957, 2008.
[22]  R. Natrajan, B. Weigelt, A. Mackay et al., “An integrative genomic and transcriptomic analysis reveals molecular pathways and networks regulated by copy number aberrations in basal-like, HER2 and luminal cancers,” Breast Cancer Research and Treatment, vol. 121, no. 3, pp. 575–589, 2010.
[23]  L. A. Carey, et al., “TBCRC 001: EGFR inhibition with cetuximab added to carboplatin in metastatic triple-negative (basal-like) breast cancer,” Journal of Clinical Oncology, vol. 26, abstract 1009, supplement, 2008.
[24]  J.. Baselga, “Cetuximab + cisplatin in estrogen receptor-negative, progesterone receptor-negative, HER2-negative (Triple-Negative) metastatic breast cancer: results of the randomized phase II BALI-1 trial,” in Proceedings of the San Antonio Breast Cancer Symposium, 2010, PD01-01.
[25]  T. Byrski, T. Huzarski, R. Dent et al., “Response to neoadjuvant therapy with cisplatin in BRCA1-positive breast cancer patients,” Breast Cancer Research and Treatment, vol. 115, no. 2, pp. 359–363, 2009.
[26]  E. S. Thomas, H. L. Gomez, R. K. Li et al., “Ixabepilone plus capecitabine for metastatic breast cancer progressing after anthracycline and taxane treatment,” Journal of Clinical Oncology, vol. 25, no. 33, pp. 5210–5217, 2007.
[27]  J. Folkman, “What is the evidence that tumors are angiogenesis dependent?” Journal of the National Cancer Institute, vol. 82, no. 1, pp. 4–6, 1990.
[28]  K. Miller, M. Wang, J. Gralow et al., “Paclitaxel plus bevacizumab versus paclitaxel alone for metastatic breast cancer,” New England Journal of Medicine, vol. 357, no. 26, pp. 2666–2676, 2007.
[29]  D. W. Miles, A. Chan, L. Y. Dirix et al., “Phase III study of bevacizumab plus docetaxel compared with placebo plus docetaxel for the first-line treatment of human epidermal growth factor receptor 2-negative metastatic breast cancer,” Journal of Clinical Oncology, vol. 28, no. 20, pp. 3239–3247, 2010.
[30]  N. J. Robert, V. Diéras, J. Glaspy et al., “RIBBON-1: randomized, double-blind, placebo-controlled, phase III trial of chemotherapy with or without bevacizumab for first-line treatment of human epidermal growth factor receptor 2-negative, locally recurrent or metastatic breast cancer,” Journal of Clinical Oncology, vol. 29, no. 10, pp. 1252–1260, 2011.
[31]  B. Gerber, et al., “Neoadjuvant bevacizumab and anthracycline–taxane-based chemotherapy in 686 triple-negative primary breast cancers: seconday endpoint analysis of the GeparQuinto study (GBG 44),” Journal of Clinical Oncology, vol. 29, abstract 1006, 2011.
[32]  G. von Minckwitz, “Neoadjuvant chemotherapy with or without Bevacizumab: primary efficacy endpoint analysis of the GEPARQUINTO Study (GBG 44),” in Proceedings of the San Antonio Breast Cancer Symposium, 2010, Abstract S4–6.
[33]  A. M. Gonzalez-Angulo, et al., “Open label, randomized clinical trial of standard neoadjuvant chemotherapy with paclitaxel followed by FEC (T-FEC) versus the combination of paclitaxel and RAD001 followed by FEC (TR-FEC) in women with triple receptor-negative breast cancer (TNBC),” Journal of Clinical Oncology, vol. 29, abstract 1016, 2011.
[34]  J. C. Keen, L. Yan, K. M. Mack et al., “A novel histone deacetylase inhibitor, Scriptaid, enhances expression of functional estrogen receptor α (ER) in ER negative human breast cancer cells in combination with 5-aza 2′-deoxycytidine,” Breast Cancer Research and Treatment, vol. 81, no. 3, pp. 177–186, 2003.
[35]  M. Lacevic, S. Minton, and M. Schmitt, “Phase II trial of the HDAC inhibitor, vorinostat, in combination with tamoxifen for patients with advanced breast cancer who have failed prior anti-hormonal therapy,” Breast Cancer Research and Treatment, vol. 106, abstract 2097, supplement 1, p. S117, 2007.
[36]  W. D. Foulkes, I. M. Stefansson, P. O. Chappuis et al., “Germline BRCA1 mutations and a basal epithelial phenotype in breast cancer,” Journal of the National Cancer Institute, vol. 95, no. 19, pp. 1482–1485, 2003.
[37]  M. J. Ellis, Y. Tao, J. Luo et al., “Outcome prediction for estrogen receptor-positive breast cancer based on postneoadjuvant endocrine therapy tumor characteristics,” Journal of the National Cancer Institute, vol. 100, no. 19, pp. 1380–1388, 2008.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133