全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

一种影响空间下的快速K-means聚类算法

Keywords: 聚类,影响空间,区域划分,代表元素

Full-Text   Cite this paper   Add to My Lib

Abstract:

摘要 K-means是一种经典的迭代划分聚类算法,但在每次迭代过程中,需要计算和比较每个数据点与所有中心点之间的距离,因此聚类过程时间开销大.利用影响空间数据结构,给出一种快速K-means聚类算法.该算法首先,引入影响空间数据结构对给定数据集进行区域划分,获得各个区域中的代表数据点;然后,对代表数据点进行K-means聚类,得到的代表数据点所属的类别即是该区域中所有数据点所属的类别,有效地降低迭代过程中的数据量,提高了聚类效率;最后,理论分析和实验结果表明,仅对代表性数据点而非数据集中所有数据点进行迭代聚类,能够在保证聚类质量的前提下,有效地提高聚类效率.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133