全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

MapReduce并行化压缩近邻算法

Keywords: 压缩近邻,K-近邻,样例选择,MapReduce

Full-Text   Cite this paper   Add to My Lib

Abstract:

摘要 压缩近邻(CNN:Condensed Nearest Neighbors)是Hart针对K-近邻(K-NN:K-Nearest Neighbors)提出的样例选择算法,目的是为了降低K-NN算法的内存需求和计算负担.但在最坏情况下,CNN算法的计算时间复杂度为O(n3),n为训练集中包含的样例数.当CNN算法应用于大数据环境时,高计算时间复杂度会成为其应用的瓶颈.针对这一问题,本文提出了基于MapReduce并行化压缩近邻算法.在Hadoop环境下,编程实现了并行化的CNN,并与原始的CNN算法在6个数据集上进行了实验比较.实验结果显示,本文提出的算法是行之有效的,能解决上述问题

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133