全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于相似性传播和流行度降维的混合推荐方法

Keywords: 社会化标签,个性化推荐,稀疏性,相似性传播,流行度降维,混合推荐

Full-Text   Cite this paper   Add to My Lib

Abstract:

摘要 社会化标签作为一种重要的显示评分技术,不仅可以描述资源而且可以表征用户的偏好,因此结合社会化标签的推荐正成为互联网推荐引擎中的研究热点.然而大多数推荐算法的研究都面临着数据稀疏性的问题,目前的学者对稀疏性问题的研究主要采用了矩阵填充技术,而没有从对矩阵精简的角度来考虑.文中通过对数据稀疏性问题进行探索和分析,提出一种基于相似性传播和流行度降维的混合推荐方法.该方法首先利用相似性的信息对数据矩阵进行传播和扩展,填充为0的元素.然后利用流行度降维算法对Tag进行评分,对于评分低于某个阈值的可以认为是无效的Tag,从矩阵中删除,从而对数据矩阵进行精简.最后利用这些高质量的数据进行混合推荐.实验结果证明我们的方法具有较好的推荐效果. 求解精度

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133