全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

低偏差蒙特卡罗序列的量子遗传算法

Keywords: 量子遗传算法,低偏差序列,低偏差序列 H_ε 量子门,Pareto集邻域搜索

Full-Text   Cite this paper   Add to My Lib

Abstract:

摘要 针对量子遗传算法存在迭代次数多、计算时间长、容易陷入局部极值的问题,提出一种低偏差蒙特卡罗序列量子遗传算法,利用低偏差序列良好的均匀性,实现量子遗传算法探索与利用的平衡.首先,提出新的低偏差序列 H_ε 量子门来更新量子态形式的种群,提高算法探索量子态的能力,减少算法的迭代次数;其次,提出Pareto集邻域搜索,在当前近优解上用低偏差序列在当前解上进行邻域搜索,以寻找更优的解.在5个复杂函数优化问题上验证本文算法,实验结果表明:所提算法的寻优能力较传统量子遗传算法更强,解的质量有两个数量级以上的提高;算法的计算时间和迭代次数亦优于传统量子遗传算法,引入低偏差序列实现量子遗传算法探索与利用的平衡是可行的

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133