全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

一种利用属性重心剖分模型的时间调整协作过滤推荐算法

Keywords: 协作过滤,相似性度量,用户群体,普遍评分值,重心剖分模型,时间维度调整

Full-Text   Cite this paper   Add to My Lib

Abstract:

摘要 针对传统协作过滤推荐算法在相似性度量环节所存在的不足之处,提出一种利用属性重心剖分模型的时间调整协作过滤推荐算法,通过对项目属性矩阵填充用户所在群体所对应的普遍评分值,进而对用户—项目评分矩阵填充评分预测值,再在填充后的用户—项目评分矩阵的基础上,利用属性重心剖分模型度量出初步相似性,并结合传统相似性,得出复合相似性,最后对复合相似性进行时间维度调整,得到最终的相似性.仿真实验结果表明,与传统的协作过滤推荐算法相比,该算法可以获得更高的推荐精准度,并能够很好地适应于数据集极度稀疏、冷启动、用户兴趣漂移等特殊情形

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133