全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

基于分水岭及半监督最小误差重构的荧光微球分割及分类方法

DOI: 10.3788/cjl201845.0307013

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对荧光微球图像分割存在粘连及有限标记样本分类困难等问题,提出了一种基于改进分水岭及半监督最小误差重构分类器(SSMREC)的荧光微球图像分割及分类方法。采用改进分水岭方法对荧光微球图像进行分割,有效分离粘连,得到独立的荧光微球对象;对微球对象的色调(H)、饱和度(S)、明度(V)即HSV颜色空间进行非均匀量化,去除冗余信息,提取鉴别特征;采用半监督误差重构分类器实现荧光微球分类。将本文方法与线性鉴别分析分类器(LDA)、随机森林分类(RFC)、稀疏表示分类器(SRC)、K近邻分类器(KNN)、支持向量机(SVM)分类方法进行比较。实验结果显示,针对每类样本随机选取2,4,6,8个有类别标记的样本时,本文方法的总体分类精度比其他算法高3.5%~14.3%,该算法在类别标记样本量较少的情况下,能够有效提高分类精度。

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133