A novel approach of spectrophotometric quantification of chitosan based on one-step depolymerization with sodium nitrite followed by reaction of the end product with thiobarbituric acid has been proposed, optimized, and validated. In this process, chitosan is converted into 2,5-anhydro-D-mannose that reacts with thiobarbituric acid to form pink color. The color that resulted from the reaction was stabilized and measured at 555?nm. The method optimization was essential as many procedural parameters influenced the accuracy of the determination including hydrolysis conditions, thiobarbituric acid concentration, reaction time, pH, reaction temperature, and color stability period. Under given optimized conditions that appeared to be critical, chitosan was quantitatively analyzed and the calibration graph was linear over the range of 10–50?μg/mL ( ). This approach was applied for determination of chitosan in pharmaceutical formulation (chitocal) and had a recovery rate of higher than 96%. The developed method is easy to use and highly accurate. 1. Introduction Recently, much attention has been paid to chitosan as a potential polysaccharide resource. Chitosan is a linear amino polysaccharide of glucosamine and N-acetylglucosamine units and is obtained by alkaline deacetylation of chitin [1]. The following major characteristics of chitosan make this polymer advantageous for numerous applications: (1) it has a defined chemical structure; (2) it can be chemically and enzymatically modified; (3) it is physically and biologically functional; (4) it is biodegradable and biocompatible with many organs, tissues, and cells; (5) it can be processed into several products including flakes, fine powders, beads, membranes, sponges, cottons, fibers, and gels. Therefore, chitosan becomes of great interest as a new functional material of high potential in various fields and the discovery or development of methods for chitosan determination is imperative [2–5]. Although research activities dealing with chitosan are numerous, a generally accepted simple method for direct quantitative analysis is lacking. Chitosan can be degraded to glucosamine monomer by hydrolysis, and there are several reports on the determination of glucosamine by chromatographic, colorimetric, and fluorimetric techniques, or a combination of these [6–8]. Eikenes et al. [6] developed a method for determination of chitosan in wood and water samples based on acidic hydrolysis of chitosan to glucosamine followed by online derivatization by o-phthalaldehyde, chromatographic separation, and fluorescent detection.
References
[1]
H. K. No and S. P. Meyers, “Preparation of chitin and chitosan,” in Chitin Handbook, R. A. A. Muzzarelli and M. G. Peter, Eds., pp. 475–489, European Chitin Society, 1997.
[2]
S. Hirano, “Chitin biotechnology applications,” Biotechnology Annual Review, vol. 2, pp. 237–258, 1996.
[3]
Y. Shigemasa and S. Minami, “Applications of chitin and chitosan for biomaterials,” Biotechnology and Genetic Engineering Reviews, vol. 13, pp. 383–420, 1996.
[4]
E. I. Rabea, M. E. T. Badawy, C. V. Stevens, G. Smagghe, and W. Steurbaut, “Chitosan as antimicrobial agent: applications and mode of action,” Biomacromolecules, vol. 4, no. 6, pp. 1457–1465, 2003.
[5]
F. Shahidi, J. K. V. Arachchi, and Y. J. Jeon, “Food applications of chitin and chitosans,” Trends in Food Science and Technology, vol. 10, no. 2, pp. 37–51, 1999.
[6]
M. Eikenes, M. Fongen, L. Roed, and Y. Stenstr?m, “Determination of chitosan in wood and water samples by acidic hydrolysis and liquid chromatography with online fluorescence derivatization,” Carbohydrate Polymers, vol. 61, no. 1, pp. 29–38, 2005.
[7]
A. Tsuji, T. Kinoshita, and M. Hoshino, “Analytical chemical studies on amino sugars. II. Determination of hexosamines using 3-methyl-2-benzothiazolone hydrazone hydrochloride,” Chemical and Pharmaceutical Bulletin, vol. 17, no. 7, pp. 1505–1510, 1969.
[8]
A. Tsuji, T. Kinoshita, and M. Hoshino, “Microdetermination of hexosamines,” Chemical and Pharmaceutical Bulletin, vol. 17, no. 1, pp. 217–218, 1969.
[9]
S. Roseman and I. Daffner, “Colorimetric method for determination of glucosamine and galactosamine,” Analytical Chemistry, vol. 28, no. 11, pp. 1743–1746, 1956.
[10]
N. I. Larionova, D. K. Zubaerova, D. T. Guranda, M. A. Pechyonkin, and N. G. Balabushevich, “Colorimetric assay of chitosan in presence of proteins and polyelectrolytes by using o-phthalaldehyde,” Carbohydrate Polymers, vol. 75, no. 4, pp. 724–727, 2009.
[11]
Z. Dische and E. Borenfreund, “A spectrophotometric method for the microdetermination of hexosamines,” The Journal of Biological Chemistry, vol. 184, no. 2, pp. 517–522, 1950.
[12]
E. Curotto and F. Aros, “Quantitative determination of chitosan and the percentage of free amino groups,” Analytical Biochemistry, vol. 211, no. 2, pp. 240–241, 1993.
[13]
S. Prochazkova, K. M. V?rum, and K. ?stgaard, “Quantitative determination of chitosans by ninhydrin,” Carbohydrate Polymers, vol. 38, no. 2, pp. 115–122, 1999.
[14]
C. Wischke and H. H. Borchert, “Increased sensitivity of chitosan determination by a dye binding method,” Carbohydrate Research, vol. 341, no. 18, pp. 2978–2979, 2006.
[15]
B. Miralles, M. Mengíbar, R. Harris, and A. Heras, “Suitability of a colorimetric method for the selective determination of chitosan in dietary supplements,” Food Chemistry, vol. 126, no. 4, pp. 1836–1839, 2011.
[16]
R. A. A. Muzzarelli, “Colorimetric determination of chitosan,” Analytical Biochemistry, vol. 260, no. 2, pp. 255–257, 1998.
[17]
D. Sekmokiene, V. Speiciene, A. Salaseviciene, and G. Garmiene, “Determination of chitosan in food products,” Veterinarija ir Zootechnika, vol. 31, pp. 87–92, 2005.
[18]
G. Lu, L. Wang, R. Wang, Y. Zeng, and X. Huang, “Determination of chitosan by cathodic stripping voltammetry,” Analytical Sciences, vol. 22, no. 4, pp. 575–578, 2006.
[19]
T. R. Bosworth and J. E. Scott, “A specific fluorometric assay for hexosamines in glycosaminoglycans, based on deaminative cleavage with nitrous acid,” Analytical Biochemistry, vol. 223, no. 2, pp. 266–273, 1994.
[20]
A. Zamani, A. Jeihanipour, L. Edebo, C. Nlklasson, and M. J. Taherzadeh, “Determination of glucosamine and N-acetyl glucosamine in fungal cell walls,” Journal of Agricultural and Food Chemistry, vol. 56, no. 18, pp. 8314–8318, 2008.
[21]
L. Daniels, R. S. Hanson, and J. A. Phillips, “Chemical analysis,” in Methods for General and Molecular Bacteriology, P. Gerhardt, R. G. E. Murray, W. A. Wood, and N. R. Krieg, Eds., pp. 518–519, American Society for Microbiology, Washington, DC, USA, 1994.
[22]
M. Izume and A. Ohtakara, “Preparation of D-glucosamine oligosaccharides by the enzymatic hydrolysis of chitosan,” Agricultural and Biological Chemistry, vol. 51, pp. 1989–11991, 1987.
[23]
S. Mao, X. Shuai, F. Unger, M. Simon, D. Bi, and T. Kissel, “The depolymerization of chitosan: effects on physicochemical and biological properties,” International Journal of Pharmaceutics, vol. 281, no. 1-2, pp. 45–54, 2004.
[24]
H. Sashiwa, H. Saimoto, Y. Shigemasa, and S. Tokura, “N-acetyl group distribution in partially deacetylated chitins prepared under homogeneous conditions,” Carbohydrate Research, vol. 242, pp. 167–172, 1993.
[25]
G. G. Allan and M. Peyron, “Molecular weight manipulation of chitosan. I: kinetics of depo-lymerization by nitrous acid,” Carbohydrate Research, vol. 277, no. 2, pp. 257–272, 1995.
[26]
G. G. Allan and M. Peyron, “Molecular weight manipulation of chitosan. II: prediction and control of extent of depolymerization by nitrous acid,” Carbohydrate Research, vol. 277, no. 2, pp. 273–282, 1995.
[27]
K. T?mmeraas, K. M. V?rum, B. E. Christensen, and O. Smidsr?d, “Preparation and characterisation of oligosaccharides produced by nitrous acid depolymerisation of chitosans,” Carbohydrate Research, vol. 333, no. 2, pp. 137–144, 2001.
[28]
L. F. Tietze and U. Beifuss, “Sequential transformations in organic chemistry: a synthetic strategy with a future,” Angewandte Chemie International Edition in English, vol. 32, no. 2, pp. 131–163, 1993.
[29]
D. A. Armbruster and T. Pry, “Limit of blank, limit of detection and limit of quantitation,” Clinical Biochemistry Review, vol. 29, supplement i, pp. S49–S52, 2008.
[30]
W. Chen and R. Y. Y. Chiou, “A modified chemical procedure for rapid determination of glucosamine and its application for estimation of mold growth in peanut kernels and koji,” Journal of Agricultural and Food Chemistry, vol. 47, no. 5, pp. 1999–2004, 1999.
[31]
C. H. Ng, S. Hein, S. Chandrkrachang, and W. F. Stevens, “Evaluation of an improved acid hydrolysis-HPLC assay for the acetyl content in chitin and chitosan,” Journal of Biomedical Materials Research—Part B, vol. 76, no. 1, pp. 155–160, 2006.
[32]
F. Niola, N. Basora, E. Chornet, and P. F. Vidal, “A rapid method for the determination of the degree of N-acetylation of chitin-chitosan samples by acid hydrolysis and HPLC,” Carbohydrate Research, vol. 238, pp. 1–9, 1993.
[33]
X. Zhu, J. Cai, J. Yang, and Q. Su, “Determination of glucosamine in impure chitin samples by high-performance liquid chromatography,” Carbohydrate Research, vol. 340, no. 10, pp. 1732–1738, 2005.
[34]
T. Wu, S. Zivanovic, F. A. Draughon, and C. E. Sams, “Chitin and chitosan-value-added products from mushroom waste,” Journal of Agricultural and Food Chemistry, vol. 52, no. 26, pp. 7905–7910, 2004.