The neurovascular/gliovascular unit has recently gained increased attention in cerebral ischemic research, especially regarding the cellular and molecular changes that occur in astrocytes and endothelial cells. In this paper we summarize the recent knowledge of these changes in association with edema formation, interactions with the basal lamina, and blood-brain barrier dysfunctions. We also review the involvement of astrocytes and endothelial cells with recombinant tissue plasminogen activator, which is the only FDA-approved thrombolytic drug after stroke. However, it has a narrow therapeutic time window and serious clinical side effects. Lastly, we provide alternative therapeutic targets for future ischemia drug developments such as peroxisome proliferator- activated receptors and inhibitors of the c-Jun N-terminal kinase pathway. Targeting the neurovascular unit to protect the blood-brain barrier instead of a classical neuron-centric approach in the development of neuroprotective drugs may result in improved clinical outcomes after stroke. 1. Introduction: Current Clinical Overview of Stroke In the United States, stroke is the number one cause of chronic disability and the fourth leading cause of death, with approximately 7 million adults affected [1]. Annually there are approximately 800,000 strokes in the US, of which 87% are ischemic strokes, 10% are primary hemorrhages, and 3% are subarachnoid hemorrhages [1]. Together they cause the country a financial burden of approximately 62.7 billion dollars [2]. Cerebral ischemic stroke is caused by an occlusion of a cerebral blood vessel, typically by a thrombus, which causes a decrease in cerebral blood flow and thus limits the supply of oxygen and nutrients globally (in global ischemia) or to certain regions of the brain (in focal brain ischemia). This absence of blood flow in a brain region causes neuronal death in addition to damaging the vascular tree; the vascular tree is usually made more fragile during the ischemic period and damaged during reperfusion. Time is an important parameter in the evolution of brain injury. In 2006, Saver et al. have estimated the impact of stroke on the brain tissue [3] to be immense; the brain may lose up to 120 million neurons, 830 billion synapses and 714?km of myelinated fibers for each hour after stroke onset [3]. Ischemic stroke seems to accelerate aging of the brain at a rate of 3.6 years each time when the symptoms are not treated [3]. Therefore, the clinical goal of acute stroke treatment is to reduce brain damage by limiting the time of ischemia through
References
[1]
V. L. Roger, A. S. Go, D. M. Lloyd-Jones et al., “Heart disease and stroke statistics-2011 update: a report from the American Heart Association,” Circulation, vol. 123, no. 4, pp. e18–e19, 2011.
[2]
W. Rosamond, K. Flegal, G. Friday et al., “Heart disease and stroke statistics—2007 Update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee,” Circulation, vol. 115, no. 5, pp. e69–e171, 2007.
[3]
J. L. Saver, “Time is brain—quantified,” Stroke, vol. 37, no. 1, pp. 263–266, 2006.
[4]
J. R. Marler, “Tissue plasminogen activator for acute ischemic stroke. The National Institute of Neurological Disorders and Stroke rt-PA Stroke study group,” New England Journal of Medicine, vol. 333, no. 24, pp. 1581–1587, 1995.
[5]
W. Hacke, M. Kaste, E. Bluhmki et al., “Thrombolysis with alteplase 3 to 4.5 hours after acute ischemic stroke,” New England Journal of Medicine, vol. 359, no. 13, pp. 1317–1329, 2008.
[6]
J. L. Saver, J. Gornbein, J. Grotta et al., “Number needed to treat to benefit and to harm for intravenous tissue plasminogen activator therapy in the 3- to 4.5-hour window Joint outcome table analysis of the ECASS 3 trial,” Stroke, vol. 40, no. 7, pp. 2433–2437, 2009.
[7]
J. P. Broderick, “Intracerebral hemorrhage after intravenous t-PA therapy for ischemic stroke,” Stroke, vol. 28, no. 11, pp. 2109–2118, 1997.
[8]
G. J. Del Zoppo, “The neurovascular unit in the setting of stroke,” Journal of Internal Medicine, vol. 267, no. 2, pp. 156–171, 2010.
[9]
C. Iadecola, “Neurovascular regulation in the normal brain and in Alzheimer's disease,” Nature Reviews Neuroscience, vol. 5, no. 5, pp. 347–360, 2004.
[10]
C. Iadecola and M. Nedergaard, “Glial regulation of the cerebral microvasculature,” Nature Neuroscience, vol. 10, no. 11, pp. 1369–1376, 2007.
[11]
E. A. Neuwelt, B. Bauer, C. Fahlke et al., “Engaging neuroscience to advance translational research in brain barrier biology,” Nature Reviews Neuroscience, vol. 12, no. 3, pp. 169–182, 2011.
[12]
B. Engelhardt and C. Coisne, “Fluids and barriers of the CNS establish immune privilege by confining immune surveillance to a two-walled castle moat surrounding the CNS castle,” Fluids and Barriers of the CNS, vol. 8, no. 1, Article ID 4, 2011.
[13]
N. J. Abbott, L. R?nnb?ck, and E. Hansson, “Astrocyte-endothelial interactions at the blood-brain barrier,” Nature Reviews Neuroscience, vol. 7, no. 1, pp. 41–53, 2006.
[14]
E. Hamel, “Perivascular nerves and the regulation of cerebrovascular tone,” Journal of Applied Physiology, vol. 100, no. 3, pp. 1059–1064, 2006.
[15]
L. Pellerin, “Food for thought: the importance of glucose and other energy substrates for sustaining brain function under varying levels of activity,” Diabetes and Metabolism, vol. 36, no. 3, pp. S59–S63, 2010.
[16]
N. J. Abbott, A. A. K. Patabendige, D. E. M. Dolman, S. R. Yusof, and D. J. Begley, “Structure and function of the blood-brain barrier,” Neurobiology of Disease, vol. 37, no. 1, pp. 13–25, 2010.
[17]
T. Owens, I. Bechmann, and B. Engelhardt, “Perivascular spaces and the two steps to neuroinflammation,” Journal of Neuropathology and Experimental Neurology, vol. 67, no. 12, pp. 1113–1121, 2008.
[18]
A. W. Unterberg, J. Stover, B. Kress, and K. L. Kiening, “Edema and brain trauma,” Neuroscience, vol. 129, no. 4, pp. 1021–1029, 2004.
[19]
J. M. Simard, T. A. Kent, M. Chen, K. V. Tarasov, and V. Gerzanich, “Brain oedema in focal ischaemia: molecular pathophysiology and theoretical implications,” The Lancet Neurology, vol. 6, no. 3, pp. 258–268, 2007.
[20]
J. Badaut, S. Ashwal, and A. Obenaus, “Aquaporins in cerebrovascular disease: a target for treatment of brain edema?” Cerebrovascular Diseases, vol. 31, no. 6, pp. 521–531, 2011.
[21]
Z. Zador, G. T. Manley, S. Stiver, and V. Wang, “Role of aquaporin-4 in cerebral edema and stroke,” Handbook of Experimental Pharmacology, vol. 190, pp. 159–170, 2009.
[22]
W. C. Risher, R. D. Andrew, and S. A. Kirov, “Real-time passive volume responses of astrocytes to acute osmotic and ischemic stress in cortical slices and in vivo revealed by two-photon microscopy,” GLIA, vol. 57, no. 2, pp. 207–221, 2009.
[23]
M. E. O'Donnell, T. I. Lam, L. Tran, and S. E. Anderson, “The role of the blood-brain barrier Na-K-2Cl cotransporter in stroke,” Advances in Experimental Medicine and Biology, vol. 559, pp. 67–75, 2005.
[24]
S. P. Duckles and D. N. Krause, “Mechanisms of cerebrovascular protection: oestrogen, inflammation and mitochondria,” Acta Physiologica, vol. 203, no. 1, pp. 149–154, 2011.
[25]
S. P. Duckles, D. N. Krause, C. Stirone, and V. Procaccio, “Estrogen and mitochondria: a new paradigm for vascular protection?” Molecular Interventions, vol. 6, no. 1, pp. 26–35, 2006.
[26]
M. De Castro Ribeiro, L. Hirt, J. Bogousslavsky, L. Regli, and J. Badaut, “Time course of aquaporin expression after transient focal cerebral ischemia in mice,” Journal of Neuroscience Research, vol. 83, no. 7, pp. 1231–1240, 2006.
[27]
L. Hirt, B. Ternon, M. Price, N. Mastour, J. F. Brunet, and J. Badaut, “Protective role of early Aquaporin 4 induction against postischemic edema formation,” Journal of Cerebral Blood Flow and Metabolism, vol. 29, no. 2, pp. 423–433, 2009.
[28]
D. Strbian, A. Durukan, M. Pitkonen et al., “The blood-brain barrier is continuously open for several weeks following transient focal cerebral ischemia,” Neuroscience, vol. 153, no. 1, pp. 175–181, 2008.
[29]
E. C. Henning, L. L. Latour, and S. Warach, “Verification of enhancement of the CSF space, not parenchyma, in acute stroke patients with early blood-brain barrier disruption,” Journal of Cerebral Blood Flow and Metabolism, vol. 28, no. 5, pp. 882–886, 2008.
[30]
A. M. Romanic, R. F. White, A. J. Arleth, E. H. Ohlstein, and F. C. Barone, “Matrix metalloproteinase expression increases after cerebral focal ischemia in rats: inhibition of matrix metalloproteinase-9 reduces infarct size,” Stroke, vol. 29, no. 5, pp. 1020–1030, 1998.
[31]
A. Kastrup, T. Engelhorn, C. Beaulieu, A. De Crespigny, and M. E. Moseley, “Dynamics of cerebral injury, perfusion, and blood-brain barrier changes after temporary and permanent middle cerebral artery occlusion in the rat,” Journal of the Neurological Sciences, vol. 166, no. 2, pp. 91–99, 1999.
[32]
S. Nagahiro, S. Goto, K. Kogo, M. Sumi, M. Takahashi, and Y. Ushio, “Sequential changes in ischemic edema following transient focal cerebral ischemia in rats: magnetic resonance imaging study,” Neurologia Medico-Chirurgica, vol. 34, no. 7, pp. 412–417, 1994.
[33]
M. Plateel, E. Teissier, and R. Cecchelli, “Hypoxia dramatically increases the nonspecific transport of blood-borne proteins to the brain,” Journal of Neurochemistry, vol. 68, no. 2, pp. 874–877, 1997.
[34]
A. Rosell, A. Ortega-Aznar, J. Alvarez-Sabín et al., “Increased brain expression of matrix metalloproteinase-9 after ischemic and hemorrhagic human stroke,” Stroke, vol. 37, no. 6, pp. 1399–1406, 2006.
[35]
G. A. Rosenberg, E. Y. Estrada, and J. E. Dencoff, “Matrix metalloproteinases and TIMPs are associated with blood-brain barrier opening after reperfusion in rat brain,” Stroke, vol. 29, no. 10, pp. 2189–2195, 1998.
[36]
E. Candelario-Jalil, Y. Yang, and G. A. Rosenberg, “Diverse roles of matrix metalloproteinases and tissue inhibitors of metalloproteinases in neuroinflammation and cerebral ischemia,” Neuroscience, vol. 158, no. 3, pp. 983–994, 2009.
[37]
A. Obenaus and S. Ashwal, “Magnetic resonance imaging in cerebral ischemia: focus on neonates,” Neuropharmacology, vol. 55, no. 3, pp. 271–280, 2008.
[38]
C. A. Chastain, U. E. Oyoyo, M. Zipperman et al., “Predicting outcomes of traumatic brain injury by imaging modality and injury distribution,” Journal of Neurotrauma, vol. 26, no. 8, pp. 1183–1196, 2009.
[39]
J. Badaut, S. Ashwal, B. Tone, L. Regli, H. R. Tian, and A. Obenaus, “Temporal and regional evolution of aquaporin-4 expression and magnetic resonance imaging in a rat pup model of neonatal stroke,” Pediatric Research, vol. 62, no. 3, pp. 248–254, 2007.
[40]
D. R. Pillai, M. S. Dittmar, D. Baldaranov et al., “Cerebral ischemia-reperfusion injury in rats—A 3 T MRI study on biphasic blood-brain barrier opening and the dynamics of edema formation,” Journal of Cerebral Blood Flow and Metabolism, vol. 29, no. 11, pp. 1846–1855, 2009.
[41]
C. S. ábrahám, N. Harada, M. A. Deli, and M. Niwa, “Transient forebrain ischemia increases the blood-brain barrier permeability for albumin in stroke-prone spontaneously hypertensive rats,” Cellular and Molecular Neurobiology, vol. 22, no. 4, pp. 455–462, 2002.
[42]
R. S. Bourke, H. K. Kimelberg, L. R. Nelson et al., “Biology of glial swelling in experimental brain edema,” Advances in Neurology, vol. 28, pp. 99–109, 1980.
[43]
H. K. Kimelberg, “Astrocytic swelling in cerebral ischemia as a possible cause of injury and target for therapy,” GLIA, vol. 50, no. 4, pp. 389–397, 2005.
[44]
J. M. Rutkowsky, B. K. Wallace, P. M. Wise, and M. E. O'Donnell, “Effects of estradiol on ischemic factor-induced astrocyte swelling and AQP4 protein abundance,” American Journal of Physiology, vol. 301, no. 1, pp. C204–C212, 2011.
[45]
M. J. Tait, S. Saadoun, B. A. Bell, and M. C. Papadopoulos, “Water movements in the brain: role of aquaporins,” Trends in Neurosciences, vol. 31, no. 1, pp. 37–43, 2008.
[46]
J. Badaut, A. Nehlig, J. M. Verbavatz, M. E. Stoeckel, M. J. Freund-Mercier, and F. Lasbennes, “Hypervascularization in the magnocellular nuclei of the rat hypothalamus: relationship with the distribution of aquaporin-4 and markers of energy metabolism,” Journal of Neuroendocrinology, vol. 12, no. 10, pp. 960–969, 2000.
[47]
J. Badaut, J. M. Verbavatz, M. J. Freund-Mercier, and F. Lasbennes, “Presence of aquaporin-4 and muscarinic receptors in astrocytes and ependymal cells in rat brain: a clue to a common function?” Neuroscience Letters, vol. 292, no. 2, pp. 75–78, 2000.
[48]
I. I. Arciénega, J. F. Brunet, J. Bloch, and J. Badaut, “Cell locations for AQP1, AQP4 and 9 in the non-human primate brain,” Neuroscience, vol. 167, no. 4, pp. 1103–1114, 2010.
[49]
D. Dolman, S. Drndarski, N. J. Abbott, and M. Rattray, “Induction of aquaporin 1 but not aquaporin 4 messenger RNA in rat primary brain microvessel endothelial cells in culture,” Journal of Neurochemistry, vol. 93, no. 4, pp. 825–833, 2005.
[50]
M. Amiry-Moghaddam, R. Xue, F. M. Haug et al., “Alpha-syntrophin deletion removes the perivascular but not endothelial pool of aquaporin-4 at the blood-brain barrier and delays the development of brain edema in an experimental model of acute hyponatremia,” The FASEB Journal, vol. 18, no. 3, pp. 542–544, 2004.
[51]
S. Nielsen, E. A. Nagelhus, M. Amiry-Moghaddam, C. Bourque, P. Agre, and O. R. Ottersen, “Specialized membrane domains for water transport in glial cells: high- resolution immunogold cytochemistry of aquaporin-4 in rat brain,” Journal of Neuroscience, vol. 17, no. 1, pp. 171–180, 1997.
[52]
G. P. Nicchia, B. Nico, L. M. A. Camassa et al., “The role of aquaporin-4 in the blood-brain barrier development and integrity: studies in animal and cell culture models,” Neuroscience, vol. 129, no. 4, pp. 935–945, 2004.
[53]
H. Wolburg, S. Noell, A. Mack, K. Wolburg-Buchholz, and P. Fallier-Becker, “Brain endothelial cells and the glio-vascular complex,” Cell and Tissue Research, vol. 335, no. 1, pp. 75–96, 2009.
[54]
H. Wolburg, S. Noell, K. Wolburg-Buchholz, A. MacK, and P. Fallier-Becker, “Agrin, aquaporin-4, and astrocyte polarity as an important feature of the blood-brain barrier,” Neuroscientist, vol. 15, no. 2, pp. 180–193, 2009.
[55]
J. Badaut, S. Ashwal, A. Adami et al., “Brain water mobility decreases after astrocytic aquaporin-4 inhibition using RNA interference,” Journal of Cerebral Blood Flow and Metabolism, vol. 31, no. 3, pp. 819–831, 2011.
[56]
J. Yu, A. J. Yool, K. Schulten, and E. Tajkhorshid, “Mechanism of gating and ion conductivity of a possible tetrameric pore in aquaporin-1,” Structure, vol. 14, no. 9, pp. 1411–1423, 2006.
[57]
J. E. Rash, K. G. V. Davidson, T. Yasumura, and C. S. Furman, “Freeze-fracture and immunogold analysis of aquaporin-4 (AQP4) square arrays, with models of AQP4 lattice assembly,” Neuroscience, vol. 129, no. 4, pp. 915–934, 2004.
[58]
C. S. Furman, D. A. Gorelick-Feldman, K. G. V. Davidson et al., “Aquaporin-4 square array assembly: opposing actions of M1 and M23 isoforms,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 23, pp. 13609–13614, 2003.
[59]
M. Suzuki, Y. Iwasaki, and T. Yamamoto, “Disintegration of orthogonal arrays in perivascular astrocytic processes as an early event in acute global ischemia,” Brain Research, vol. 300, no. 1, pp. 141–145, 1984.
[60]
R. Musa-Aziz, L. M. Chen, M. F. Pelletier, and W. F. Boron, “Relative CO2/NH3 selectivities of AQP1, AQP4, AQP5, AmtB, and RhAG,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 13, pp. 5406–5411, 2009.
[61]
J. Zhou, H. Kong, X. Hua, M. Xiao, J. Ding, and G. Hu, “Altered blood-brain barrier integrity in adult aquaporin-4 knockout mice,” NeuroReport, vol. 19, no. 1, pp. 1–5, 2008.
[62]
B. Nico, A. Frigeri, G. P. Nicchia et al., “Role of aquaporin-4 water channel in the development and integrity of the blood-brain barrier,” Journal of Cell Science, vol. 114, no. 7, pp. 1297–1307, 2001.
[63]
Y. Hiroaki, K. Tani, A. Kamegawa et al., “Implications of the aquaporin-4 structure on array formation and cell adhesion,” Journal of Molecular Biology, vol. 355, no. 4, pp. 628–639, 2006.
[64]
T. Gonen, P. Silz, J. Kistler, Y. Cheng, and T. Walz, “Aquaporin-0 membrane junctions reveal the structure of a closed water pore,” Nature, vol. 429, no. 6988, pp. 193–197, 2004.
[65]
A. Warth, S. Kr?ger, and H. Wolburg, “Redistribution of aquaporin-4 in human glioblastoma correlates with loss of agrin immunoreactivity from brain capillary basal laminae,” Acta Neuropathologica, vol. 107, no. 4, pp. 311–318, 2004.
[66]
E. Guadagno and H. Moukhles, “Laminin-induced aggregation of the inwardly rectifying potassium channel, Kir4.1, and the water-permeable channel, AQP4, via a dystroglycan-containing complex in astrocytes,” GLIA, vol. 47, no. 2, pp. 138–149, 2004.
[67]
J. D. Neely, M. Amiry-Moghaddam, O. P. Ottersen, S. C. Froehner, P. Agre, and M. E. Adams, “Syntrophin-dependent expression and localization of Aquaporin-4 water channel protein,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 24, pp. 14108–14113, 2001.
[68]
M. Amiry-Moghaddam, T. Otsuka, P. D. Hurn et al., “An α-syntrophin-dependent pool of AQP4 in astroglial end-feet confers bidirectional water flow between blood and brain,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 4, pp. 2106–2111, 2003.
[69]
S. Saadoun, M. J. Tait, A. Reza et al., “AQP4 gene deletion in mice does not alter blood-brain barrier integrity or brain morphology,” Neuroscience, vol. 161, no. 3, pp. 764–772, 2009.
[70]
G. Bix and R. V. Iozzo, “Novel interactions of perlecan: unraveling Perlecan's role in angiogenesis,” Microscopy Research and Technique, vol. 71, no. 5, pp. 339–348, 2008.
[71]
S. Noell, P. Fallier-Becker, U. Deutsch, A. F. MacK, and H. Wolburg, “Agrin defines polarized distribution of orthogonal arrays of particles in astrocytes,” Cell and Tissue Research, vol. 337, no. 2, pp. 185–195, 2009.
[72]
M. Ramos-Fernandez, M. F. Bellolio, and L. G. Stead, “Matrix metalloproteinase-9 as a marker for acute ischemic stroke: a systematic review,” Journal of Stroke and Cerebrovascular Diseases, vol. 20, no. 1, pp. 47–54, 2011.
[73]
B. Lee, D. Clarke, A. Al Ahmad et al., “Perlecan domain V is neuroprotective and proangiogenic following ischemic stroke in rodents,” Journal of Clinical Investigation, vol. 121, no. 8, pp. 3005–3023, 2011.
[74]
Z. G. Zhang, L. Zhang, Q. Jiang et al., “VEGF enhances angiogenesis and promotes blood-brain barrier leakage in the ischemic brain,” Journal of Clinical Investigation, vol. 106, no. 7, pp. 829–838, 2000.
[75]
A. J. Al-Ahmad, B. Lee, M. Saini, and G. J. Bix, “Perlecan domain V modulates astrogliosis In vitro and after focal cerebral ischemia through multiple receptors and increased nerve growth factor release,” GLIA, vol. 59, no. 12, pp. 1822–1840, 2011.
[76]
D. K. Binder, X. Yao, Z. Zador, T. J. Sick, A. S. Verkman, and G. T. Manley, “Increased seizure duration and slowed potassium kinetics in mice lacking aquaporin-4 water channels,” GLIA, vol. 53, no. 6, pp. 631–636, 2006.
[77]
V. Benfenati, G. P. Nicchia, M. Svelto, C. Rapisarda, A. Frigeri, and S. Ferroni, “Functional down-regulation of volume-regulated anion channels in AQP4 knockdown cultured rat cortical astrocytes,” Journal of Neurochemistry, vol. 100, no. 1, pp. 87–104, 2007.
[78]
J. E. Rash, “Molecular disruptions of the panglial syncytium block potassium siphoning and axonal saltatory conduction: pertinence to neuromyelitis optica and other demyelinating diseases of the central nervous system,” Neuroscience, vol. 168, no. 4, pp. 982–1008, 2010.
[79]
C. Giaume, A. Koulakoff, L. Roux, D. Holcman, and N. Rouach, “Astroglial networks: a step further in neuroglial and gliovascular interactions,” Nature Reviews Neuroscience, vol. 11, no. 2, pp. 87–99, 2010.
[80]
A. Tabernero, J. M. Medina, and C. Giaume, “Glucose metabolism and proliferation in glia: role of astrocytic gap junctions,” Journal of Neurochemistry, vol. 99, no. 4, pp. 1049–1061, 2006.
[81]
A. L. Harris, “Connexin channel permeability to cytoplasmic molecules,” Progress in Biophysics and Molecular Biology, vol. 94, no. 1-2, pp. 120–143, 2007.
[82]
G. Zoidl and R. Dermietzel, “On the search for the electrical synapse: a glimpse at the future,” Cell and Tissue Research, vol. 310, no. 2, pp. 137–142, 2002.
[83]
J. E. Rash, T. Yasumura, K. G. V. Davidson, C. S. Furman, F. E. Dudek, and J. I. Nagy, “Identification of cells expressing Cx43, Cx30, Cx26, Cx32 and Cx36 in gap junctions of rat brain and spinal cord,” Cell Communication and Adhesion, vol. 8, no. 4-6, pp. 315–320, 2001.
[84]
J. I. Nagy, F. E. Dudek, and J. E. Rash, “Update on connexins and gap junctions in neurons and glia in the mammalian nervous system,” Brain Research Reviews, vol. 47, no. 1-3, pp. 191–215, 2004.
[85]
J. E. Rash, T. Yasumura, F. E. Dudek, and J. I. Nagy, “Cell-specific expression of connexins and evidence of restricted gap junctional coupling between glial cells and between neurons,” Journal of Neuroscience, vol. 21, no. 6, pp. 1983–2000, 2001.
[86]
K. Nagasawa, H. Chiba, H. Fujita et al., “Possible involvement of gap junctions in the barrier function of tight junctions of brain and lung endothelial cells,” Journal of Cellular Physiology, vol. 208, no. 1, pp. 123–132, 2006.
[87]
M. A. Avila, S. L. Sell, B. E. Hawkins et al., “Cerebrovascular connexin expression: effects of traumatic brain injury,” Journal of Neurotrauma, vol. 28, no. 9, pp. 1803–1811, 2011.
[88]
R. Farahani, M. H. Pina-Benabou, A. Kyrozis et al., “Alterations in metabolism and gap junction expression may determine the role of astrocytes as “good Samaritans” or executioners,” GLIA, vol. 50, no. 4, pp. 351–361, 2005.
[89]
T. Nakase, Y. Yoshida, and K. Nagata, “Enhanced connexin 43 immunoreactivity in penumbral areas in the human brain following ischemia,” GLIA, vol. 54, no. 5, pp. 369–375, 2006.
[90]
W. M. Armstead, “Superoxide generation links protein kinase C activation to impaired ATP- sensitive K+ channel function after brain injury,” Stroke, vol. 30, no. 1, pp. 153–159, 1999.
[91]
W. M. Armstead, “Age-dependent impairment of K(ATP) channel function following brain injury,” Journal of Neurotrauma, vol. 16, no. 5, pp. 391–402, 1999.
[92]
J. Badaut, J. F. Brunet, and L. Regli, “Aquaporins in the brain: from aqueduct to “multi-duct”,” Metabolic Brain Disease, vol. 22, no. 3-4, pp. 251–263, 2007.
[93]
A. S. Verkman, D. K. Binder, O. Bloch, K. Auguste, and M. C. Papadopoulos, “Three distinct roles of aquaporin-4 in brain function revealed by knockout mice,” Biochimica et Biophysica Acta, vol. 1758, no. 8, pp. 1085–1093, 2006.
[94]
G. T. Manley, M. Fujimura, T. Ma et al., “Aquaporin-4 deletion in mice reduces brain edema after acute water intoxication and ischemic stroke,” Nature Medicine, vol. 6, no. 2, pp. 159–163, 2000.
[95]
M. C. Papadopoulos, G. T. Manley, S. Krishna, and A. S. Verkman, “Aquaporin-4 facilitates reabsorption of excess fluid in vasogenic brain edema,” FASEB Journal, vol. 18, no. 11, pp. 1291–1293, 2004.
[96]
Q. Guo, I. Sayeed, L. M. Baronne, S. W. Hoffman, R. Guennoun, and D. G. Stein, “Progesterone administration modulates AQP4 expression and edema after traumatic brain injury in male rats,” Experimental Neurology, vol. 198, no. 2, pp. 469–478, 2006.
[97]
C. H. Chen, R. Xue, J. Zhang, X. Li, S. Mori, and A. Bhardwaj, “Effect of osmotherapy with hypertonic saline on regional cerebral edema following experimental stroke: a study utilizing magnetic resonance imaging,” Neurocritical Care, vol. 7, no. 1, pp. 92–100, 2007.
[98]
D. F. Chapman, P. Lyden, P. A. Lapchak, S. Nunez, H. Thibodeaux, and J. Zivin, “Comparison of TNK with wild-type tissue plasminogen activator in a rabbit embolic stroke model,” Stroke, vol. 32, no. 3, pp. 748–752, 2001.
[99]
P. A. Lapchak, D. M. Araujo, and J. A. Zivin, “Comparison of Tenecteplase with Alteplase on clinical rating scores following small clot embolic strokes in rabbits,” Experimental Neurology, vol. 185, no. 1, pp. 154–159, 2004.
[100]
J. H. Gurwitz, J. M. Gore, R. J. Goldberg et al., “Risk for intracranial hemorrhage after tissue plasminogen activator treatment for acute myocardial infarction,” Annals of Internal Medicine, vol. 129, no. 8, pp. 597–604, 1998.
[101]
O. Nicole, F. Docagne, C. Ali et al., “The proteolytic activity of tissue-plasminogen activator enhances NMDA receptor-mediated signaling,” Nature Medicine, vol. 7, no. 1, pp. 59–64, 2001.
[102]
K. Benchenane, J. P. López-Atalaya, M. Fernández-Monreal, O. Touzani, and D. Vivien, “Equivocal roles of tissue-type plasminogen activator in stroke-induced injury,” Trends in Neurosciences, vol. 27, no. 3, pp. 155–160, 2004.
[103]
A. L. Samson and R. L. Medcalf, “Tissue-type plasminogen activator: a multifaceted modulator of neurotransmission and synaptic plasticity,” Neuron, vol. 50, no. 5, pp. 673–678, 2006.
[104]
M. Yepes, B. D. Roussel, C. Ali, and D. Vivien, “Tissue-type plasminogen activator in the ischemic brain: more than a thrombolytic,” Trends in Neurosciences, vol. 32, no. 1, pp. 48–55, 2009.
[105]
C. J. Siao, S. R. Fernandez, and S. E. Tsirka, “Cell type-specific roles for tissue plasminogen activator released by neurons or microglia after excitotoxic injury,” Journal of Neuroscience, vol. 23, no. 8, pp. 3234–3242, 2003.
[106]
M. Yepes, M. Sandkvist, E. G. Moore, T. H. Bugge, D. K. Strickland, and D. A. Lawrence, “Tissue-type plasminogen activator induces opening of the blood-brain barrier via the LDL receptor-related protein,” Journal of Clinical Investigation, vol. 112, no. 10, pp. 1533–1540, 2003.
[107]
M. Fernández-Monreal, J. P. López-Atalaya, K. Benchenane et al., “Arginine 260 of the amino-terminal domain of NR1 subunit is critical for tissue-type plasminogen activator-mediated enhancement of N-methyl-D-aspartate receptor signaling,” Journal of Biological Chemistry, vol. 279, no. 49, pp. 50850–50856, 2004.
[108]
M. Fernández-Monreal, J. P. López-Atalaya, K. Benchenane et al., “Is tissue-type plasminogen activator a neuromodulator?” Molecular and Cellular Neuroscience, vol. 25, no. 4, pp. 594–601, 2004.
[109]
R. MacRez, P. Obiang, M. Gauberti et al., “Antibodies preventing the interaction of tissue-type plasminogen activator with N-methyl-D-aspartate receptors reduce stroke damages and extend the therapeutic window of thrombolysis,” Stroke, vol. 42, no. 8, pp. 2315–2322, 2011.
[110]
K. Benchenane, V. Berezowski, C. Ali et al., “Tissue-type plasminogen activator crosses the intact blood-brain barrier by low-density lipoprotein receptor-related protein-mediated transcytosis,” Circulation, vol. 111, no. 17, pp. 2241–2249, 2005.
[111]
K. Benchenane, V. Berezowski, M. Fernández-Monreal et al., “Oxygen glucose deprivation switches the transport of tPA across the blood-brain barrier from an LRP-dependent to an increased LRP-independent process,” Stroke, vol. 36, no. 5, pp. 1059–1064, 2005.
[112]
C. S. Kidwell, L. Latour, J. L. Saver et al., “Thrombolytic toxicity: blood brain barrier disruption in human ischemic stroke,” Cerebrovascular Diseases, vol. 25, no. 4, pp. 338–343, 2008.
[113]
T. Aoki, T. Sumii, T. Mori, X. Wang, and E. H. Lo, “Blood-brain barrier disruption and matrix metalloproteinase-9 expression during reperfusion injury mechanical versus embolic focal ischemia in spontaneously hypertensive rats,” Stroke, vol. 33, no. 11, pp. 2711–2717, 2002.
[114]
M. A. Kelly, A. Shuaib, and K. G. Todd, “Matrix metalloproteinase activation and blood-brain barrier breakdown following thrombolysis,” Experimental Neurology, vol. 200, no. 1, pp. 38–49, 2006.
[115]
S. R. Lee, S. Z. Guo, R. H. Scannevin et al., “Induction of matrix metalloproteinase, cytokines and chemokines in rat cortical astrocytes exposed to plasminogen activators,” Neuroscience Letters, vol. 417, no. 1, pp. 1–5, 2007.
[116]
X. Wang, K. Tsuji, S. R. Lee et al., “Mechanisms of hemorrhagic transformation after tissue plasminogen activator reperfusion therapy for ischemic stroke,” Stroke, vol. 35, no. 11, pp. 2726–2730, 2004.
[117]
J.-C. Copin, D. J. Bengualid, R. F. Da Silva, O. Kargiotis, K. Schaller, and Y. Gasche, “Recombinant tissue plasminogen activator induces blood-brain barrier breakdown by a matrix metalloproteinase-9-independent pathway after transient focal cerebral ischemia in mouse,” European Journal of Neuroscience, vol. 34, no. 7, pp. 1085–1092, 2011.
[118]
S. Gautier, O. Petrault, P. Gele et al., “Involvement of thrombolysis in recombinant tissue plasminogen activator-induced cerebral hemorrhages and effect on infarct volume and postischemic endothelial function,” Stroke, vol. 34, no. 12, pp. 2975–2979, 2003.
[119]
P. A. Lapchak, D. F. Chapman, and J. A. Zivin, “Metalloproteinase inhibition reduces thrombolytic (tissue plasminogen activator)-induced hemorrhage after thromboembolic stroke,” Stroke, vol. 31, no. 12, pp. 3034–3040, 2000.
[120]
X. Wang, S. R. Lee, K. Arai et al., “Lipoprotein receptor-mediated induction of matrix metalloproteinase by tissue plasminogen activator,” Nature Medicine, vol. 9, no. 10, pp. 1313–1317, 2003.
[121]
X. Zhang, R. Polavarapu, H. She, Z. Mao, and M. Yepes, “Tissue-type plasminogen activator and the low-density lipoprotein receptor-related protein mediate cerebral ischemia-induced nuclear factor-κB pathway activation,” American Journal of Pathology, vol. 171, no. 4, pp. 1281–1290, 2007.
[122]
R. Polavarapu, J. An, C. Zhang, and M. Yepes, “Regulated intramembrane proteolysis of the low-density lipoprotein receptor-related protein mediates ischemic cell death,” American Journal of Pathology, vol. 172, no. 5, pp. 1355–1362, 2008.
[123]
R. Polavarapu, M. C. Gongora, H. Yi et al., “Tissue-type plasminogen activator-mediated shedding of astrocytic low-density lipoprotein receptor-related protein increases the permeability of the neurovascular unit,” Blood, vol. 109, no. 8, pp. 3270–3278, 2007.
[124]
J. O'Rourke, X. Jiang, Z. Hao, R. E. Cone, and A. R. Hand, “Distribution of sympathetic tissue plasminogen activator (tPA) to a distant microvasculature,” Journal of Neuroscience Research, vol. 79, no. 6, pp. 727–733, 2005.
[125]
R. Wong, “NMDA receptors expressed in oligodendrocytes,” BioEssays, vol. 28, no. 5, pp. 460–464, 2006.
[126]
A. Reijerkerk, G. Kooij, S. M. A. Van Der Pol et al., “The NR1 subunit of NMDA receptor regulates monocyte transmigration through the brain endothelial cell barrier,” Journal of Neurochemistry, vol. 113, no. 2, pp. 447–453, 2010.
[127]
G. T. Liberatore, A. Samson, C. Bladin, W. D. Schleuning, and R. L. Medcalf, “Vampire bat salivary plasminogen activator (desmoteplase): a unique fibrinolytic enzyme that does not promote neurodegeneration,” Stroke, vol. 34, no. 2, pp. 537–543, 2003.
[128]
J. P. López-Atalaya, B. D. Roussel, C. Ali et al., “Recombinant Desmodus rotundus salivary plasminogen activator crosses the blood-brain barrier through a low-density lipoprotein receptor-related protein-dependent mechanism without exerting neurotoxic effects,” Stroke, vol. 38, no. 3, pp. 1036–1043, 2007.
[129]
W. Hacke, A. J. Furlan, Y. Al-Rawi et al., “Intravenous desmoteplase in patients with acute ischaemic stroke selected by MRI perfusion-diffusion weighted imaging or perfusion CT (DIAS-2): a prospective, randomised, double-blind, placebo-controlled study,” The Lancet Neurology, vol. 8, no. 2, pp. 141–150, 2009.
[130]
E. J. Su, L. Fredriksson, M. Geyer et al., “Activation of PDGF-CC by tissue plasminogen activator impairs blood-brain barrier integrity during ischemic stroke,” Nature Medicine, vol. 14, no. 7, pp. 731–737, 2008.
[131]
J. Alvarez-Sabín, P. Delgado, S. Abilleira et al., “Temporal profile of matrix metalloproteinases and their inhibitors after spontaneous intracerebral hemorrhage: relationship to clinical and radiological outcome,” Stroke, vol. 35, no. 6, pp. 1316–1322, 2004.
[132]
S. Horstmann, P. Kalb, J. Koziol, H. Gardner, and S. Wagner, “Profiles of matrix metalloproteinases, their inhibitors, and laminin in stroke patients: influence of different therapies,” Stroke, vol. 34, no. 9, pp. 2165–2170, 2003.
[133]
J. Montaner, “Stroke biomarkers: can they help us to guide stroke thrombolysis?” Drug News and Perspectives, vol. 19, no. 9, pp. 523–532, 2006.
[134]
A. Rosell and E. H. Lo, “Multiphasic roles for matrix metalloproteinases after stroke,” Current Opinion in Pharmacology, vol. 8, no. 1, pp. 82–89, 2008.
[135]
A. R. Green, “Pharmacological approaches to acute ischaemic stroke: reperfusion certainly, neuroprotection possibly,” British Journal of Pharmacology, vol. 153, no. 1, pp. S325–S338, 2008.
[136]
A. F. Ducruet, B. T. Grobelny, B. E. Zacharia, Z. L. Hickman, M. L. Yeh, and E. S. Connolly Jr., “Pharmacotherapy of cerebral ischemia,” Expert Opinion on Pharmacotherapy, vol. 10, no. 12, pp. 1895–1906, 2009.
[137]
U. Dirnagl, K. Becker, and A. Meisel, “Preconditioning and tolerance against cerebral ischaemia: from experimental strategies to clinical use,” The Lancet Neurology, vol. 8, no. 4, pp. 398–412, 2009.
[138]
J. Chen and R. Simon, “Ischemic tolerance in the brain,” Neurology, vol. 48, no. 2, pp. 306–311, 1997.
[139]
C. E. Murry, R. B. Jennings, and K. A. Reimer, “Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium,” Circulation, vol. 74, no. 5, pp. 1124–1136, 1986.
[140]
T. Kirino, “Ischemic tolerance,” Journal of Cerebral Blood Flow and Metabolism, vol. 22, no. 11, pp. 1283–1296, 2002.
[141]
M. P. Stenzel-Poore, S. L. Stevens, and R. P. Simon, “Genomics of preconditioning,” Stroke, vol. 35, no. 11, supplement 1, pp. 2683–2686, 2004.
[142]
M. P. Stenzel-Poore, S. L. Stevens, Z. Xiong et al., “Effect of ischaemic preconditioning on genomic response to cerebral ischaemia: similarity to neuroprotective strategies in hibernation and hypoxia-tolerant states,” The Lancet, vol. 362, no. 9389, pp. 1028–1037, 2003.
[143]
J. L. Cadet and I. N. Krasnova, “Cellular and molecular neurobiology of brain preconditioning,” Molecular Neurobiology, vol. 39, no. 1, pp. 50–61, 2009.
[144]
A. Kunz, L. Park, T. Abe et al., “Neurovascular protection by ischemic tolerance: role of nitric oxide and reactive oxygen species,” Journal of Neuroscience, vol. 27, no. 27, pp. 7083–7093, 2007.
[145]
T. Masada, Y. Hua, G. Xi, S. R. Ennis, and R. F. Keep, “Attenuation of ischemic brain edema and cerebrovascular injury after ischemic preconditioning in the rat,” Journal of Cerebral Blood Flow and Metabolism, vol. 21, no. 1, pp. 22–33, 2001.
[146]
F. Y. Zhang, X. C. Chen, H. M. Ren, and W. M. Bao, “Effects of ischemic preconditioning on blood-brain barrier permeability and MMP-9 expression of ischemic brain,” Neurological Research, vol. 28, no. 1, pp. 21–24, 2006.
[147]
S. Zahler, C. Kupatt, and B. F. Becker, “Endothelial preconditioning by transient oxidative stress reduces inflammatory responses of cultured endothelial cells to TNF-α,” FASEB Journal, vol. 14, no. 3, pp. 555–564, 2000.
[148]
S. G. Zhou, X. Y. Lei, and D. F. Liao, “Effects of hypoxic preconditioning on the adhesion of neutrophils to vascular endothelial cells induced by hypoxia/reoxygenation,” Chinese Critical Care Medicine, vol. 15, no. 3, pp. 159–162, 2003.
[149]
P. An and Y. X. Xue, “Effects of preconditioning on tight junction and cell adhesion of cerebral endothelial cells,” Brain Research, vol. 1272, no. C, pp. 81–88, 2009.
[150]
A. V. Andjelkovic, S. M. Stamatovic, and R. F. Keep, “The protective effects of preconditioning on cerebral endothelial cells in vitro,” Journal of Cerebral Blood Flow and Metabolism, vol. 23, no. 11, pp. 1348–1355, 2003.
[151]
R. Gesuete, F. Orsini, E. R. Zanier et al., “Glial cells drive preconditioning-induced blood-brain barrier protection,” Stroke, vol. 42, no. 5, pp. 1445–1453, 2011.
[152]
T. Yamashita, K. Deguchi, S. Nagotani, and K. Abe, “Vascular protection and restorative therapy in ischemic stroke,” Cell Transplantation, vol. 20, no. 1, pp. 95–97, 2011.
[153]
P. A. Lapchak, “A critical assessment of edaravone acute ischemic stroke efficacy trials: is edaravone an effective neuroprotective therapy?” Expert Opinion on Pharmacotherapy, vol. 11, no. 10, pp. 1753–1763, 2010.
[154]
S. Feng, Q. Yang, M. Liu et al., “Edaravone for acute ischaemic stroke,” Cochrane Database of Systematic Reviews, vol. 12, p. CD007230, 2011.
[155]
D. Deplanque and R. Bordet, “Physical activity: one of the easiest ways to protect the brain?” Journal of Neurology, Neurosurgery and Psychiatry, vol. 80, no. 9, p. 942, 2009.
[156]
P. Amarenco, “Hypercholesterolemia, lipid-lowering agents, and the risk for brain infarction,” Neurology, vol. 57, no. 5, pp. S35–S44, 2001.
[157]
H. B. Rubins, J. Davenport, V. Babikian et al., “Reduction in stroke with gemfibrozil in men with coronary heart disease and low HDL cholesterol the veterans affairs HDL intervention trial (VA-HIT),” Circulation, vol. 103, no. 23, pp. 2828–2833, 2001.
[158]
D. Deplanque, I. Masse, C. Lefebvre, C. Libersa, D. Leys, and R. Bordet, “Prior TIA, lipid-lowering drug use, and physical activity decrease ischemic stroke severity,” Neurology, vol. 67, no. 8, pp. 1403–1410, 2006.
[159]
B. Desvergne and W. Wahli, “Peroxisome proliferator-activated receptors: nuclear control of metabolism,” Endocrine Reviews, vol. 20, no. 5, pp. 649–688, 1999.
[160]
P. Lefebvre, G. Chinetti, J. C. Fruchart, and B. Staels, “Sorting out the roles of PPARα in energy metabolism and vascular homeostasis,” Journal of Clinical Investigation, vol. 116, no. 3, pp. 571–580, 2006.
[161]
S. Moreno, S. Farioli-vecchioli, and M. P. Cerù, “Immunolocalization of peroxisome proliferator-activated receptors and retinoid X receptors in the adult rat CNS,” Neuroscience, vol. 123, no. 1, pp. 131–145, 2004.
[162]
M. Ricote and C. K. Glass, “PPARs and molecular mechanisms of transrepression,” Biochimica et Biophysica Acta, vol. 1771, no. 8, pp. 926–935, 2007.
[163]
P. Delerive, K. De Bosscher, S. Besnard et al., “Peroxisome proliferator-activated receptor α negatively regulates the vascular inflammatory gene response by negative cross-talk with transcription factors NF-κB and AP-1,” Journal of Biological Chemistry, vol. 274, no. 45, pp. 32048–32054, 1999.
[164]
M. Collino, M. Aragno, R. Mastrocola et al., “Oxidative stress and inflammatory response evoked by transient cerebral ischemia/reperfusion: effects of the PPAR-α agonist WY14643,” Free Radical Biology and Medicine, vol. 41, no. 4, pp. 579–589, 2006.
[165]
D. Deplanque, P. Gelé, O. Pétrault et al., “Peroxisome proliferator-activated receptor-α activation as a mechanism of preventive neuroprotection induced by chronic fenofibrate treatment,” Journal of Neuroscience, vol. 23, no. 15, pp. 6264–6271, 2003.
[166]
H. Inoue, X. F. Jiang, T. Katayama, S. Osada, K. Umesono, and S. Namura, “Brain protection by resveratrol and fenofibrate against stroke requires peroxisome proliferator-activated receptor α in mice,” Neuroscience Letters, vol. 352, no. 3, pp. 203–206, 2003.
[167]
C. Mysiorek, M. Culot, L. Dehouck et al., “Peroxisome proliferator-activated receptor-α activation protects brain capillary endothelial cells from oxygen-glucose deprivation-induced hyperpermeability in the blood-brain barrier,” Current Neurovascular Research, vol. 6, no. 3, pp. 181–193, 2009.
[168]
Y. Luo, W. Yin, A. P. Signore et al., “Neuroprotection against focal ischemic brain injury by the peroxisome proliferator-activated receptor-γ agonist rosiglitazone,” Journal of Neurochemistry, vol. 97, no. 2, pp. 435–448, 2006.
[169]
T. Mabuchi, K. Kitagawa, T. Ohtsuki et al., “Contribution of microglia/macrophages to expansion of infarction and response of oligodendrocytes after focal cerebral ischemia in rats,” Stroke, vol. 31, no. 7, pp. 1735–1743, 2000.
[170]
L. Pantoni, C. Sarti, and D. Inzitari, “Cytokines and cell adhesion molecules in cerebral ischemia: experimental bases and therapeutic perspectives,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 18, no. 4, pp. 503–513, 1998.
[171]
T. Kielian and P. D. Drew, “Effects of peroxisome proliferator-activated receptor-γ agonists on central nervous system inflammation,” Journal of Neuroscience Research, vol. 71, no. 3, pp. 315–325, 2003.
[172]
X. Zhao, Z. Ou, J. C. Grotta, N. Waxham, and J. Aronowski, “Peroxisome-proliferator-activated receptor-gamma (PPARγ) activation protects neurons from NMDA excitotoxicity,” Brain Research, vol. 1073-1074, no. 1, pp. 460–469, 2006.
[173]
M. Endres, “Statins and stroke,” Journal of Cerebral Blood Flow and Metabolism, vol. 25, no. 9, pp. 1093–1110, 2005.
[174]
A. Zacco, J. Togo, K. Spence et al., “3-hydroxy-3-methylglutaryl coenzyme a reductase inhibitors protect cortical neurons from excitotoxicity,” Journal of Neuroscience, vol. 23, no. 35, pp. 11104–11111, 2003.
[175]
C. R. W. Kuhlmann, M. Gerigk, B. Bender, D. Closhen, V. Lessmann, and H. J. Luhmann, “Fluvastatin prevents glutamate-induced blood-brain-barrier disruption in vitro,” Life Sciences, vol. 82, no. 25-26, pp. 1281–1287, 2008.
[176]
S. Wang, S. R. Lee, S. Z. Guo et al., “Reduction of tissue plasminogen activator-induced matrix metalloproteinase-9 by simvastatin in astrocytes,” Stroke, vol. 37, no. 7, pp. 1910–1912, 2006.
[177]
M. Jasińska, J. Owczarek, and D. Orszulak-Michalak, “Statins: a new insight into their mechanisms of action and consequent pleiotropic effects,” Pharmacological Reports, vol. 59, no. 5, pp. 483–499, 2007.
[178]
G. Martin, H. Duez, C. Blanquart et al., “Statin-induced inhibition of the rho-signaling pathway activates PPARα and induces HDL apoA-I,” Journal of Clinical Investigation, vol. 107, no. 11, pp. 1423–1432, 2001.
[179]
R. Paumelle and B. Staels, “Cross-talk between statins and PPARα in cardiovascular diseases: clinical evidence and basic mechanisms,” Trends in Cardiovascular Medicine, vol. 18, no. 3, pp. 73–78, 2008.
[180]
K. J. Yin, Z. Deng, M. Hamblin, J. Zhang, and Y. E. Chen, “Vascular PPARδ protects against stroke-induced brain injury,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 31, no. 3, pp. 574–581, 2011.
[181]
A. Plotnikov, E. Zehorai, S. Procaccia, and R. Seger, “The MAPK cascades: signaling components, nuclear roles and mechanisms of nuclear translocation,” Biochimica et Biophysica Acta, vol. 1813, no. 9, pp. 1619–1633, 2011.
[182]
C. Widmann, S. Gibson, M. B. Jarpe, and G. L. Johnson, “Mitogen-activated protein kinase: conservation of a three-kinase module from yeast to human,” Physiological Reviews, vol. 79, no. 1, pp. 143–180, 1999.
[183]
V. Waetzig, Y. Zhao, and T. Herdegen, “The bright side of JNKs-Multitalented mediators in neuronal sprouting, brain development and nerve fiber regeneration,” Progress in Neurobiology, vol. 80, no. 2, pp. 84–97, 2006.
[184]
J. M. Kyriakis and J. Avruch, “Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation,” Physiological Reviews, vol. 81, no. 2, pp. 807–869, 2001.
[185]
W. Haeusgen, R. Boehm, Y. Zhao, T. Herdegen, and V. Waetzig, “Specific activities of individual c-Jun N-terminal kinases in the brain,” Neuroscience, vol. 161, no. 4, pp. 951–959, 2009.
[186]
H. Nishina, T. Wada, and T. Katada, “Physiological roles of SAPK/JNK signaling pathway,” Journal of Biochemistry, vol. 136, no. 2, pp. 123–126, 2004.
[187]
V. Waetzig and T. Herdegen, “MEKK1 controls neurite regrowth after experimental injury by balancing ERK1/2 and JNK2 signaling,” Molecular and Cellular Neuroscience, vol. 30, no. 1, pp. 67–78, 2005.
[188]
M. A. Bogoyevitch, “The isoform-specific functions of the c-Jun N-terminal kinases (JNKs): differences revealed by gene targeting,” BioEssays, vol. 28, no. 9, pp. 923–934, 2006.
[189]
S. Brecht, R. Kirchhof, A. Chromik et al., “Specific pathophysiological functions of JNK isoforms in the brain,” European Journal of Neuroscience, vol. 21, no. 2, pp. 363–377, 2005.
[190]
H. Chaudhury, M. Zakkar, J. Boyle et al., “C-Jun N-terminal kinase primes endothelial cells at atheroprone sites for apoptosis,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 30, no. 3, pp. 546–553, 2010.
[191]
J. Cui, M. Zhang, Y. Q. Zhang, and Z. H. Xu, “JNK pathway: diseases and therapeutic potential,” Acta Pharmacologica Sinica, vol. 28, no. 5, pp. 601–608, 2007.
[192]
Y. Gao, A. P. Signore, W. Yin et al., “Neuroprotection against focal ischemic brain injury by inhibition of c-Jun N-terminal kinase and attenuation of the mitochondrial apoptosis-signaling pathway,” Journal of Cerebral Blood Flow and Metabolism, vol. 25, no. 6, pp. 694–712, 2005.
[193]
T. Borsellol, P. G. H. Clarkel, L. Hirt et al., “A peptide inhibitor of c-Jun N-terminal kinase protects against excitotoxicity and cerebral ischemia,” Nature Medicine, vol. 9, no. 9, pp. 1180–1186, 2003.
[194]
L. Hirt, J. Badaut, J. Thevenet et al., “D-JNKI1, a cell-penetrating c-Jun-N-terminal kinase inhibitor, protects against cell death in severe cerebral ischemia,” Stroke, vol. 35, no. 7, pp. 1738–1743, 2004.
[195]
K. Wiegler, C. Bonny, D. Coquoz, and L. Hirt, “The JNK inhibitor XG-102 protects from ischemic damage with delayed intravenous administration also in the presence of recombinant tissue plasminogen activator,” Cerebrovascular Diseases, vol. 26, no. 4, pp. 360–366, 2008.
[196]
D. Michel-Monigadon, C. Bonny, and L. Hirt, “C-Jun N-terminal kinase pathway inhibition in intracerebral hemorrhage,” Cerebrovascular Diseases, vol. 29, no. 6, pp. 564–570, 2010.
[197]
Z. Xie, C. J. Smith, and L. J. Van Eldik, “Activated glia induce neuron death Via MAP kinase signaling pathways involving JNK and p38,” GLIA, vol. 45, no. 2, pp. 170–179, 2004.
[198]
R. Kacimi, R. G. Giffard, and M. A. Yenari, “Endotoxin-activated microglia injure brain derived endothelial cells via NF-κB, JAK-STAT and JNK stress kinase pathways,” Journal of Inflammation, vol. 8, article 7, 2011.
[199]
C. Benakis, C. Bonny, and L. Hirt, “JNK inhibition and inflammation after cerebral ischemia,” Brain, Behavior, and Immunity, vol. 24, no. 5, pp. 800–811, 2010.