全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

The Study of the Reaction of Pectin-Ag(0) Nanocomposites Formation

DOI: 10.1155/2012/459410

Full-Text   Cite this paper   Add to My Lib

Abstract:

Pectin polysaccharides (PSs) were isolated from a bark of Larix sibirica Ledeb. Structure of PS fragments determined by chemical transformations, chromatography, and spectroscopic analyses was found to be a linear galacturonane comprising 1,4-linked α-D-GalpA residues and a rhamnogalacturonan I (RG-I). The fifth part of galacturonane residues was methyl esterified at at C-2 and/or C-3 and C-6 atoms. Some of RG-I side chains were identified as arabinogalactan subunits with highly branched structure consisting of linear backbone with 3,6)-β-D-Galp-(1 residues, substituted at C-6 by neutral side chains. This side chains contained 2,5)-α-L-Araf-(1 and 3,5)-α-L-Araf-(1 residues and terminal arabinose in the pyranose and furanose form. It was found that “pectin-Ag(0)” nanobiocomposites were formed via the interaction between PS aqueous solutions and silver nitrate, with PS playing both reducing and stabilizing functions. It was shown that the content of Ag(0) particles in “pectin-Ag(0)” depended on the reaction conditions and can range from 0.1 to 72 %, the size of Ag(0) particles being 3–27?nm. Using 13C NMR technique, it was revealed that PS underwent destructive changes and they they were more considerable, more than the lot of Ag(I) that was inputed into the reactionary medium. 1. Introduction Two species of the genus Larix Mill, Larix sibirica Ledeb and Larix gmelinii (Rupr.) Rupr., are considered to be the most abundant trees in the Russian Federation and the total stock of their wood recourses exceeds 26 billion?m3. Traditionally, the main economic benefit of the larch wood is a manufacture of roundwood (timber), the value of which is determined by a high quality of lumber obtained from this tree. Sometimes, the larch wood can be used in insignificant quantities in pulp-and-paper manufacture to produce pulp. Currently, about 40% of this valuable wood (bark, sawdust) is utilized as wastes. Such inexpedient approach to the utilization of larch wood does not allow using the richest potential of this renewable raw material. Meanwhile, biologically active compounds contained in larch biomass can be successfully applied for the manufacture of medical, food, and agricultural products. The development of complex technologies for chemical processing of larch biomass and waste timber will considerably raise the economic value of this biological resource. However, the larch bark does not find industrial application. Annual volume of waste produced by wood-processing industry and the pulp-and-paper enterprises is more than 30 million?m3. It represents a serious

References

[1]  O. H. Lowry, N. J. Rosebrough, A. L. Farr, and R. J. Randall, “Protein measurement with the Folin phenol reagent,” The Journal of Biological Chemistry, vol. 193, no. 1, pp. 265–275, 1951.
[2]  V. A. Babkin, N. V. Ivanova, N. N. Trofimova, et al., “Isolation of pectin, possessing membrane stabilizing activity and ability to reduce silver ions, from larch wood,” Silver nanocomposites stabilized by pectin. Pat RU, 2403263, 2010.
[3]  A. P. Krechkov, The Foundations of Analytic Chemistry, vol. 2, Khimya, 1978.
[4]  R. G. Ovodova, O. A. Bushneva, A. S. Shashkov, A. O. Chizhov, and Y. S. Ovodov, “Structural studies on pectin from marsh cinquefoil Comarum palustre L,” Biokhimiya, vol. 70, no. 8, pp. 1051–1062, 2005.
[5]  P. Odonoma?ig, D. Balga, and A. Ebrigerova, “Structures of pectin polysaccharides isolated from the Siberian apricot (Armaniaca sibirica Lam),” Carbohydrate Research, vol. 226, pp. 353–358, 1992.
[6]  Y. S. Ovodov, V. V. Golovchenko, E. A. Gunter, and S. V. Popov, Pectin Substances in Plants of European North of Russia, Uro RAN, Ekaterinburg, Russia, 2009.
[7]  S. T. Minzanova, V. F. Mironov, et al., “Technological aspects of receiving fodder additives from the amarant,” Doklady Chemistry, vol. 3, pp. 363–366, 2007.
[8]  V. N. Bubenchikov, I. L. Drozdova, and V. I. Kochkarov, Method of Isolation of the Polysaccharides Possessing Anti-Inflammatory Activity, Pat RU, 2002.
[9]  R. G. Ovodova, S. V. Popov, O. A. Bushneva et al., “Branching of the galacturonan backbone of comaruman, a pectin from the marsh cinquefoil Comarum palustre L,” Russian Journal of Bioorganic Chemistry, vol. 71, no. 5, pp. 652–671, 2006.
[10]  M. K. Gelgay, L. V. Donchenko, and A. I. Reshetnyak, “Innovative technology of pectin from secondary sources of raw material after processing coffee,” New Technologies, vol. 6, pp. 15–18, 2008.
[11]  G. B. Aimukhomedova and N. P. Shelukhina, Pectin Substances and Their Determination Methods, Ilim, Frunze, Russia, 1964.
[12]  N. V. Ivanova, O. V. Popova, and V. A. Babkin, “Analysis of influecing of the different factors on an output and some characteristics of pectin materials of a Larch bark,” Khimiya Rastitel'nogo Syr'ya, no. 4, pp. 43–46, 2003.
[13]  K. Nakanisi, Infrared Spectra and Structure of Organic Compounds, Moscow, Russia, 1965.
[14]  R. G. Ovodova, V. V. Golovchenko, A. S. Shashkov, S. V. Popov, and Y. S. Ovodov, “Structural studies and physiological activity of lemnan, a pectin from Lemna minor L,” Russian Journal of Bioorganic Chemistry, vol. 26, no. 10, pp. 669–676, 2000.
[15]  S. Karacsonyi, V. Kovacik, J. Alfoldi, et al., “Chemical and 13C-n.m.r. studies of an arabinogalactan from Larix sibirica L,” Carbohydrate Research, vol. 134, no. 2, pp. 265–274, 1984.
[16]  S. D. Achubaeva, Chemical Reactions of Pectinaceous Substances, Ilim, Frunze, Russia, 1984.
[17]  A. E. Clarke, R. L. Anderson, and B. A. Stone, “Form and function of arabinogalactans and arabinogalactan-proteins,” Phytochemistry, vol. 18, no. 4, pp. 521–540, 1979.
[18]  Y. A. Krutyakov, A. A. Kudrinskiy, A. Y. Olenin, and G. V. Lisichkin, “Synthesis and properties of silver nanoparticles: advances and prospects,” Russian Chemical Reviews, vol. 77, no. 3, pp. 233–257, 2008.
[19]  A. A. Kornevskii, V. V. Sorokin, and G. I. Karavaiko, “Co-operating of silver ions with the cages of Canlida utilis,” Microbiologia, vol. 6, pp. 1085–1092, 1993.
[20]  O. E. Litmanovich, “Psevdomatrix sintez of polimer-metal nanocomposite sols: interakion of macromolecules with metal nanoparticles,” Chinese Journal of Polymer Science C, vol. 58, no. 7, pp. 1370–1396, 2008.
[21]  A. D. Pomogailo, “Polymer-immobilised nanoscale and cluster metal particles,” Uspekhi Khimii, vol. 66, no. 8, pp. 785–791, 1997.
[22]  B. A. Trofimov, B. G. Sukhov, G. P. Aleksandrova et al., “Nanocomposites with magnetic, optical, catalytic, and biologically active properties based on arabinogalactan,” Doklady Chemistry, vol. 393, no. 4-6, pp. 287–288, 2003.
[23]  B. A. Trofimov, B. G. Sukhov, G. P. Aleksandrova, et al., “Polyfunctional self-organized hybrid nanobiocomposetes on basis of natural polymers,” http://edu-cons.net/atlas_last/doc/302/1(2).pdf.
[24]  I. N. Yurkova, D. A. Panov, and V. A. Ryabushko, “Study of optical properties of nanobiocomposites on silver and marine alga polysaccharides base,” Uchenye Zapiski Tavricheskogo Universiteta Series Biologiya and Khimiya, vol. 22, no. 1, pp. 203–207, 2009.
[25]  O. P. Golova and N. V. Nosova, “Oxidative-alkaline destruction of cellulose,” Russian Chemical Reviews, vol. 42, no. 4, pp. 743–767, 1973.
[26]  P. A. Gachonidze, “Saccharine acids,” Russian Chemical Reviews, vol. 49, no. 4, pp. 743–767, 1980.
[27]  B. P. Nikolskii, Novyi Spravochnik Chimika I Technologa, 2009.
[28]  I. V. Norgov, Progress in Carbohydrate Chemistry, Nauka, Moscow, Russia, 1985.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133