全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

WIPI-1 Positive Autophagosome-Like Vesicles Entrap Pathogenic Staphylococcus aureus for Lysosomal Degradation

DOI: 10.1155/2012/179207

Full-Text   Cite this paper   Add to My Lib

Abstract:

Invading pathogens provoke the autophagic machinery and, in a process termed xenophagy, the host cell survives because autophagy is employed as a safeguard for pathogens that escaped phagosomes. However, some pathogens can manipulate the autophagic pathway and replicate within the niche of generated autophagosome-like vesicles. By automated fluorescence-based high content analyses, we demonstrate that Staphylococcus aureus strains (USA300, HG001, SA113) stimulate autophagy and become entrapped in intracellular PtdIns(3)P-enriched vesicles that are decorated with human WIPI-1, an essential PtdIns(3)P effector of canonical autophagy and membrane protein of both phagophores and autophagosomes. Further, agr-positive S. aureus (USA300, HG001) strains were more efficiently entrapped in WIPI-1 positive autophagosome-like vesicles when compared to agr-negative cells (SA113). By confocal and electron microscopy we provide evidence that single- and multiple-Staphylococci entrapped undergo cell division. Moreover, the number of WIPI-1 positive autophagosome-like vesicles entrapping Staphylococci significantly increased upon (i) lysosomal inhibition by bafilomycin A1 and (ii) blocking PIKfyve-mediated PtdIns(3,5)P2 generation by YM201636. In summary, our results provide evidence that the PtdIns(3)P effector function of WIPI-1 is utilized during xenophagy of Staphylococcus aureus. We suggest that invading S. aureus cells become entrapped in autophagosome-like WIPI-1 positive vesicles targeted for lysosomal degradation in nonprofessional host cells. 1. Introduction Macroautophagy (hereafter autophagy) is a cytoprotective cellular degradation mechanism for long-lived proteins and organelles [1]. Autophagy is specific to eukaryotic cells and important for cellular survival by enabling a constitutive clearance and recycling of cytoplasmic material (basal autophagy). Crucial to the process of autophagy is the fact, that cytoplasmic material is stochastically degraded. Portions of the cytoplasm become randomly sequestered in unique, double-membrane vesicles, autophagosomes. Autophagosomes are generated by elongation and closure of a membrane precursor, the phagophore. Subsequently, autophagosomes fuse with lysosomes to acquire acidic hydrolases for cargo degradation [2]. This stochastic constitutive form of autophagy provides constant clearance of the cytoplasm. Upon stress, such as starvation, the autophagic activity is induced above basal level to compensate nutrient shortage by providing monomeric constituents, such as amino acids, and energy. Conversely, under

References

[1]  Z. Yang and D. J. Klionsky, “Eaten alive: a history of macroautophagy,” Nature Cell Biology, vol. 12, no. 9, pp. 814–822, 2010.
[2]  Z. Yang and D. J. Klionsky, “Mammalian autophagy: core molecular machinery and signaling regulation,” Current Opinion in Cell Biology, vol. 22, no. 2, pp. 124–131, 2010.
[3]  J. Kim, M. Kundu, B. Viollet, and K. L. Guan, “AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1,” Nature Cell Biology, vol. 13, no. 2, pp. 132–141, 2011.
[4]  A. Van Der Vaart, M. Mari, and F. Reggiori, “A picky eater: exploring the mechanisms of selective autophagy in human pathologies,” Traffic, vol. 9, no. 3, pp. 281–289, 2008.
[5]  N. Mizushima, B. Levine, A. M. Cuervo, and D. J. Klionsky, “Autophagy fights disease through cellular self-digestion,” Nature, vol. 451, no. 7182, pp. 1069–1075, 2008.
[6]  T. Noda, K. Matsunaga, and T. Yoshimori, “Atg14L recruits PtdIns 3-kinase to the ER for autophagosome formation,” Autophagy, vol. 7, no. 4, pp. 438–439, 2011.
[7]  T. Proikas-Cezanne and P. Codogno, “Beclin 1 or not Beclin 1,” Autophagy, vol. 7, no. 7, pp. 671–672, 2011.
[8]  T. Proikas-Cezanne, S. Waddell, A. Gaugel, T. Frickey, A. Lupas, and A. Nordheim, “WIPI-1α (WIPI49), a member of the novel 7-bladed WIPI protein family, is aberrantly expressed in human cancer and is linked to starvation-induced autophagy,” Oncogene, vol. 23, no. 58, pp. 9314–9325, 2004.
[9]  M. Mauthe, A. Jacob, S. Freiberger, et al., “Resveratrol-mediated autophagy requires WIPI-1 regulated LC3 lipidation in the absence of induced phagophore formation,” Autophagy, vol. 7, no. 12, pp. 1448–1461, 2011.
[10]  T. Proikas-Cezanne and H. Robenek, “Freeze-fracture replica immunolabelling reveals human WIPI-1 and WIPI-2 as membrane proteins of autophagosomes,” Journal of Cellular and Molecular Medicine, vol. 15, no. 9, pp. 2007–2010, 2011.
[11]  T. Proikas-Cezanne, S. Ruckerbauer, Y. D. Stierhof, C. Berg, and A. Nordheim, “Human WIPI-1 puncta-formation: a novel assay to assess mammalian autophagy,” FEBS Letters, vol. 581, no. 18, pp. 3396–3404, 2007.
[12]  B. Levine, N. Mizushima, and H. W. Virgin, “Autophagy in immunity and inflammation,” Nature, vol. 469, no. 7330, pp. 323–335, 2011.
[13]  I. Fedtke, F. G?tz, and A. Peschel, “Bacterial evasion of innate host defenses—the Staphylococcus aureus lesson,” International Journal of Medical Microbiology, vol. 294, no. 2-3, pp. 189–194, 2004.
[14]  A. Schnaith, H. Kashkar, S. A. Leggio, K. Addicks, M. Kr?nke, and O. Krut, “Staphylococcus aureus subvert autophagy for induction of caspase-independent host cell death,” Journal of Biological Chemistry, vol. 282, no. 4, pp. 2695–2706, 2007.
[15]  S. G. Pfisterer, M. Mauthe, P. Codogno, et al., “Ca2+/calmodulin-dependent kinase signaling via CaMKI and AMPK contributes to the regulation of WIPI-1 at the onset of autophagy,” Molecular Pharmacology, vol. 80, no. 6, pp. 1066–1075, 2011.
[16]  L. K. McDougal, C. D. Steward, G. E. Killgore, J. M. Chaitram, S. K. McAllister, and F. C. Tenover, “Pulsed-field gel electrophoresis typing of oxacillin-resistant Staphylococcus aureus isolates from the United States: establishing a national database,” Journal of Clinical Microbiology, vol. 41, no. 11, pp. 5113–5120, 2003.
[17]  S. Herbert, A. K. Ziebandt, K. Ohlsen et al., “Repair of global regulators in Staphylococcus aureus 8325 and comparative analysis with other clinical isolates,” Infection and Immunity, vol. 78, no. 6, pp. 2877–2889, 2010.
[18]  S. Iordanescu and M. Surdeanu, “Two restrictions and modification systems in Staphylococcus aureus NCTC8325,” Journal of General Microbiology, vol. 96, no. 2, pp. 277–281, 1976.
[19]  R. Rosenstein, C. Nerz, L. Biswas et al., “Genome analysis of the meat starter culture bacterium Staphylococcus carnosus TM300,” Applied and Environmental Microbiology, vol. 75, no. 3, pp. 811–822, 2009.
[20]  A. Grotemeier, S. Alers, S. G. Pfisterer et al., “AMPK-independent induction of autophagy by cytosolic Ca2+ increase,” Cellular Signalling, vol. 22, no. 6, pp. 914–925, 2010.
[21]  R. Rosenstein and F. G?tz, “Genomic differences between the food-grade Staphylococcus carnosus and pathogenic staphylococcal species,” International Journal of Medical Microbiology, vol. 300, no. 2-3, pp. 104–108, 2010.
[22]  T. Proikas-Cezanne and S. G. Pfisterer, “Assessing mammalian autophagy by WIPI-1/Atg18 puncta formation,” Methods in Enzymology, vol. 452, pp. 247–260, 2009.
[23]  H. Robenek, M. J. Robenek, I. Buers et al., “Lipid droplets gain PAT family proteins by interaction with specialized plasma membrane domains,” Journal of Biological Chemistry, vol. 280, no. 28, pp. 26330–26338, 2005.
[24]  H. B. J. Jefferies, F. T. Cooke, P. Jat et al., “A selective PIKfyve inhibitor blocks PtdIns(3,5)P(2) production and disrupts endomembrane transport and retroviral budding,” EMBO Reports, vol. 9, no. 2, pp. 164–170, 2008.
[25]  B. Levine, “Eating oneself and uninvited guests: autophagy-related pathways in cellular defense,” Cell, vol. 120, no. 2, pp. 159–162, 2005.
[26]  R. Sumpter Jr. and B. Levine, “Autophagy and innate immunity: triggering, targeting and tuning,” Seminars in Cell and Developmental Biology, vol. 21, no. 7, pp. 699–711, 2010.
[27]  M. C. Lerena, C. L. Vázquez, and M. I. Colombo, “Bacterial pathogens and the autophagic response,” Cellular Microbiology, vol. 12, no. 1, pp. 10–18, 2010.
[28]  S. Shahnazari and J. H. Brumell, “Mechanisms and consequences of bacterial targeting by the autophagy pathway,” Current Opinion in Microbiology, vol. 14, no. 1, pp. 68–75, 2011.
[29]  H. Ham, A. Sreelatha, and K. Orth, “Manipulation of host membranes by bacterial effectors,” Nature Reviews Microbiology, vol. 9, no. 9, pp. 635–646, 2011.
[30]  J. Pizarro-Cerdá and P. Cossart, “Subversion of phosphoinositide metabolism by intracellular bacterial pathogens,” Nature Cell Biology, vol. 6, no. 11, pp. 1026–1033, 2004.
[31]  T. Noda and T. Yoshimori, “Molecular basis of canonical and bactericidal autophagy,” International Immunology, vol. 21, no. 11, pp. 1199–1204, 2009.
[32]  E. Itakura and N. Mizushima, “Characterization of autophagosome formation site by a hierarchical analysis of mammalian Atg proteins,” Autophagy, vol. 6, no. 6, pp. 764–776, 2010.
[33]  J. M. Gaullier, A. Simonsen, A. D'Arrigo, B. Bremnes, H. Stenmark, and R. Aasland, “FYVE fingers bind PtdIns(3)P,” Nature, vol. 394, no. 6692, pp. 432–433, 1998.
[34]  S. Kageyama, H. Omori, T. Saitoh et al., “The LC3 recruitment mechanism is separate from Atg9L1-dependent membrane formation in the autophagic response against Salmonella,” Molecular Biology of the Cell, vol. 22, no. 13, pp. 2290–2300, 2011.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133