全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Targeting Metabolism and Autophagy in the Context of Haematologic Malignancies

DOI: 10.1155/2012/595976

Full-Text   Cite this paper   Add to My Lib

Abstract:

Autophagy is a cellular process that maintains the homeostasis of the normal cell. It not only allows for cell survival in times of metabolic stress with nutrient recycling but also is able to lead to cell death when required. During malignant transformation the cell is able to proliferate and survive. This is due to altered cell metabolism and the presence of altered genetic changes that maintain the cell survival. Metabolism was considered an innocent bystander that was a consequence of the increased nutrient requirement for the survival and proliferation of haematological malignancies. The interdependency of metabolism and cellular mechanisms such as autophagy are becoming more evident and important. This interdependence contributes to increased cancer progression and drug resistance. In this paper we aim to discuss autophagy, how it pertains to metabolism in the context of hematologic malignancies, and the implications for therapy. 1. Introduction Autophagy was first described in the 1960s but its importance in various physiological conditions in addition to the basic molecular understanding of autophagy has only come into focus in the last decade. The word autophagy is derived from Greek: auto, meaning “self” and phagy, “to eat.” This term was coined due to the process by which cellular components are degraded through the lysosomal enzymatic pathway providing a cell with essential amino acids, nucleotides, and fatty acids that enable production of the elements required for energy and macromolecule production [1, 2]. Normal cells engage in autophagy as a means to survive disruptions in nutrient and growth factor availability. It also serves to eliminate damaged organelles and proteins to prevent accumulation. This prevents them from becoming toxic to the cell. If autophagy is prolonged to a point where normal cell function is compromised, cells undergo cell death either through apoptosis or by autophagy itself. One of the main inducers of autophagy is metabolic stress, and understanding the relationship between autophagy and metabolism could lead to better therapeutic strategies in treatment of haematological malignancies. 2. Regulation of Autophagy Autophagy is characterized by cytoplasmic constituents sequestered into double-membraned vacuoles called autophagosomes. Autophagosomes then fuse with lysosomes (autolysosomes). Autolysosomes degrade cellular components releasing required nutrients to the cell. The regulation of autophagosome and autolysosome structures requires both positive and negative signaling pathways. The discovery in yeast of

References

[1]  D. Glick, S. Barth, and K. F. Macleod, “Autophagy: cellular and molecular mechanisms,” Journal of Pathology, vol. 221, no. 1, pp. 3–12, 2010.
[2]  E. A. Corcelle, P. Puustinen, and M. J??ttel?, “Apoptosis and autophagy: targeting autophagy signalling in cancer cells—“trick or treats”?” FEBS Journal, vol. 276, no. 21, pp. 6084–6096, 2009.
[3]  M. Thumm, “Isolation of autophagocytosis mutants of Saccharomyces cerevisiae,” FEBS Letters, vol. 349, no. 2, pp. 275–280, 1994.
[4]  M. Tsukada and Y. Ohsumi, “Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae,” FEBS Letters, vol. 333, no. 1-2, pp. 169–174, 1993.
[5]  M. Mehrpour, A. Esclatine, I. Beau, and P. Codogno, “Overview of macroautophagy regulation in mammalian cells,” Cell Research, vol. 20, no. 7, pp. 748–762, 2010.
[6]  S. Di Bartolomeo, M. Corazzari, F. Nazio et al., “The dynamic interaction of AMBRA1 with the dynein motor complex regulates mammalian autophagy,” Journal of Cell Biology, vol. 191, no. 1, pp. 155–168, 2010.
[7]  C. Liang, D. Sir, S. Lee, J. H. J. Ou, and J. U. Jung, “Beyond autophagy: the role of UVRAG in membrane trafficking,” Autophagy, vol. 4, no. 6, pp. 817–820, 2008.
[8]  I. Tanida, “Autophagy basics,” Microbiology and Immunology, vol. 55, no. 1, pp. 1–11, 2011.
[9]  N. Mizushima, “The role of the Atg1/ULK1 complex in autophagy regulation,” Current Opinion in Cell Biology, vol. 22, no. 2, pp. 132–139, 2010.
[10]  N. Mizushima and B. Levine, “Autophagy in mammalian development and differentiation,” Nature Cell Biology, vol. 12, no. 9, pp. 823–830, 2010.
[11]  C. Yi, M. Ma, L. Ran et al., “Function and molecular mechanism of acetylation in autophagy regulation,” Science, vol. 336, no. 6080, pp. 474–477, 2012.
[12]  S. Díaz-Troya, M. E. Pérez-Pérez, F. J. Florencio, and J. L. Crespo, “The role of TOR in autophagy regulation from yeast to plants and mammals,” Autophagy, vol. 4, no. 7, pp. 851–865, 2008.
[13]  S. Y. Sun, “Enhancing perifosine's anticancer efficacy by preventing autophagy,” Autophagy, vol. 6, no. 1, pp. 184–185, 2010.
[14]  R. J. Shaw, “LKB1 and AMP-activated protein kinase control of mTOR signalling and growth,” Acta Physiologica, vol. 196, no. 1, pp. 65–80, 2009.
[15]  S.-Y. Lin, T. Y. Li, Q. Liu et al., “GSK3-TIP60-ULK1 signaling pathway links growth factor deprivation to autophagy,” Science, vol. 336, no. 6080, pp. 477–481, 2012.
[16]  H. Zhang, X. Kong, J. Kang et al., “Oxidative stress induces parallel autophagy and mitochondria dysfunction in human glioma U251 cells,” Toxicological Sciences, vol. 110, no. 2, pp. 376–388, 2009.
[17]  T. Johansen and T. Lamark, “Selective autophagy mediated by autophagic adapter proteins,” Autophagy, vol. 7, no. 3, pp. 279–296, 2011.
[18]  J. F. Dice, “Chaperone-mediated autophagy,” Autophagy, vol. 3, no. 4, pp. 295–299, 2007.
[19]  M. Kundu, T. Lindsten, C. Y. Yang et al., “Ulk1 plays a critical role in the autophagic clearance of mitochondria and ribosomes during reticulocyte maturation,” Blood, vol. 112, no. 4, pp. 1493–1502, 2008.
[20]  H. Sandoval, P. Thiagarajan, S. K. Dasgupta et al., “Essential role for Nix in autophagic maturation of erythroid cells,” Nature, vol. 454, no. 7201, pp. 232–235, 2008.
[21]  P. Colosetti, A. Puissant, G. Robert et al., “Autophagy is an important event for megakaryocytic differentiation of the chronic myelogenous leukemia K562 cell line,” Autophagy, vol. 5, no. 8, pp. 1092–1098, 2009.
[22]  H. H. Pua, I. Dzhagalov, M. Chuck, N. Mizushima, and Y. W. He, “A critical role for the autophagy gene Atg5 in T cell survival and proliferation,” Journal of Experimental Medicine, vol. 204, no. 1, pp. 25–31, 2007.
[23]  B. C. Miller, Z. Zhao, L. M. Stephenson et al., “The autophagy gene ATG5 plays an essential role in B lymphocyte development,” Autophagy, vol. 4, no. 3, pp. 309–314, 2008.
[24]  S. Bomken, K. Fi?er, O. Heidenreich, and J. Vormoor, “Understanding the cancer stem cell,” British Journal of Cancer, vol. 103, no. 4, pp. 439–445, 2010.
[25]  J. E. Crowley, J. L. Scholz, W. J. Quinn III et al., “Homeostatic control of B lymphocyte subsets,” Immunologic Research, vol. 42, no. 1–3, pp. 75–83, 2008.
[26]  B. J. P. Huntly and D. G. Gilliland, “Leukaemia stem cells and the evolution of cancer-stem-cell research,” Nature Reviews Cancer, vol. 5, no. 4, pp. 311–321, 2005.
[27]  M. Mortensen, E. J. Soilleux, G. Djordjevic et al., “The autophagy protein Atg7 is essential for hematopoietic stem cell maintenance,” Journal of Experimental Medicine, vol. 208, no. 3, pp. 455–467, 2011.
[28]  M. Mortensen, A. S. Watson, and A. K. Simon, “Lack of autophagy in the hematopoietic system leads to loss of hematopoietic stem cell function and dysregulated myeloid proliferation,” Autophagy, vol. 7, no. 9, pp. 1069–1070, 2011.
[29]  M. M. Hippert, P. S. O'Toole, and A. Thorburn, “Autophagy in cancer: good, bad, or both?” Cancer Research, vol. 66, no. 19, pp. 9349–9351, 2006.
[30]  S. Jin and E. White, “Role of autophagy in cancer: management of metabolic stress,” Autophagy, vol. 3, no. 1, pp. 28–31, 2007.
[31]  P. Boya, R. A. González-Polo, N. Casares et al., “Inhibition of macroautophagy triggers apoptosis,” Molecular and Cellular Biology, vol. 25, no. 3, pp. 1025–1040, 2005.
[32]  K. Degenhardt, R. Mathew, B. Beaudoin et al., “Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis,” Cancer Cell, vol. 10, no. 1, pp. 51–64, 2006.
[33]  J. J. Lum, D. E. Bauer, M. Kong et al., “Growth factor regulation of autophagy and cell survival in the absence of apoptosis,” Cell, vol. 120, no. 2, pp. 237–248, 2005.
[34]  M. N. Moore, J. I. Allen, and P. J. Somerfield, “Autophagy: role in surviving environmental stress,” Marine Environmental Research, vol. 62, supplement 1, pp. S420–S425, 2006.
[35]  B. Wolozin and C. Behl, “Mechanisms of neurodegenerative disorders. Part 1: protein aggregates,” Archives of Neurology, vol. 57, no. 6, pp. 793–796, 2000.
[36]  A. S. Watson, M. Mortensen, and A. K. Simon, “Autophagy in the pathogenesis of myelodysplastic syndrome and acute myeloid leukemia,” Cell Cycle, vol. 10, no. 11, pp. 1719–1725, 2011.
[37]  A. S. Green, N. Chapuis, T. T. Maciel et al., “The LKB1/AMPK signaling pathway has tumor suppressor activity in acute myeloid leukemia through the repression of mTOR-dependent oncogenic mRNA translation,” Blood, vol. 116, no. 20, pp. 4262–4273, 2010.
[38]  B. Calabretta and P. Salomoni, “Inhibition of autophagy: a new strategy to enhance sensitivity of chronic myeloid leukemia stem cells to tyrosine kinase inhibitors,” Leukemia and Lymphoma, vol. 52, no. 1, pp. 54–59, 2011.
[39]  X. H. Liang, S. Jackson, M. Seaman et al., “Induction of autophagy and inhibition of tumorigenesis by beclin 1,” Nature, vol. 402, no. 6762, pp. 672–676, 1999.
[40]  Z. Yue, S. Jin, C. Yang, A. J. Levine, and N. Heintz, “Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 25, pp. 15077–15082, 2003.
[41]  Z. Feng, H. Zhang, A. J. Levine, and S. Jin, “The coordinate regulation of the p53 and mTOR pathways in cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 23, pp. 8204–8209, 2005.
[42]  Z. B. Ding, Y. H. Shi, J. Zhou et al., “Association of autophagy defect with a malignant phenotype and poor prognosis of hepatocellular carcinoma,” Cancer Research, vol. 68, no. 22, pp. 9167–9175, 2008.
[43]  S. Fujii, S. Mitsunaga, M. Yamazaki et al., “Autophagy is activated in pancreatic cancer cells and correlates with poor patient outcome,” Cancer Science, vol. 99, no. 9, pp. 1813–1819, 2008.
[44]  L. Pirtoli, G. Cevenini, P. Tini et al., “The prognostic role of Beclin 1 protein expression in high-grade gliomas,” Autophagy, vol. 5, no. 7, pp. 930–936, 2009.
[45]  S. Arico, A. Petiot, C. Bauvy et al., “The tumor suppressor PTEN positively regulates macroautophagy by inhibiting the phosphatidylinositol 3-kinase/protein kinase B pathway,” The Journal of Biological Chemistry, vol. 276, no. 38, pp. 35243–35246, 2001.
[46]  D. J. Klionsky, H. Abeliovich, P. Agostinis et al., “Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes,” Autophagy, vol. 4, no. 2, pp. 151–175, 2008.
[47]  M. Hoare, A. R. J. Young, and M. Narita, “Autophagy in cancer: having your cake and eating it,” Seminars in Cancer Biology, vol. 21, no. 6, pp. 397–404, 2011.
[48]  E. S. Henson, J. B. Johnston, and S. B. Gibson, “The role of TRAIL death receptors in the treatment of hematological malignancies,” Leukemia and Lymphoma, vol. 49, no. 1, pp. 27–35, 2008.
[49]  S. Fulda, “Cell death in hematological tumors,” Apoptosis, vol. 14, no. 4, pp. 409–423, 2009.
[50]  V. Adam-Vizi and C. Chinopoulos, “Bioenergetics and the formation of mitochondrial reactive oxygen species,” Trends in Pharmacological Sciences, vol. 27, no. 12, pp. 639–645, 2006.
[51]  Y. Chen and S. B. Gibson, “Is mitochondrial generation of reactive oxygen species a trigger for autophagy?” Autophagy, vol. 4, no. 2, pp. 246–248, 2008.
[52]  J. D. Lambeth, “Nox enzymes, ROS, and chronic disease: an example of antagonistic pleiotropy,” Free Radical Biology and Medicine, vol. 43, no. 3, pp. 332–347, 2007.
[53]  J. P. Fruehauf and F. L. Meyskens, “Reactive oxygen species: a breath of life or death?” Clinical Cancer Research, vol. 13, no. 3, pp. 789–794, 2007.
[54]  H. U. Simon, A. Haj-Yehia, and F. Levi-Schaffer, “Role of reactive oxygen species (ROS) in apoptosis induction,” Apoptosis, vol. 5, no. 5, pp. 415–418, 2000.
[55]  B. N. Lyu, S. B. Ismailov, B. Ismailov, and M. B. Lyu, “Mitochondrial concept of leukemogenesis: key role of oxygen-peroxide effects,” Theoretical Biology and Medical Modelling, vol. 5, article 23, 2008.
[56]  Y. Ohsumi, “Molecular dissection of autophagy: two ubiquitin-like systems,” Nature Reviews Molecular Cell Biology, vol. 2, no. 3, pp. 211–216, 2001.
[57]  R. Scherz-Shouval, E. Shvets, E. Fass, H. Shorer, L. Gil, and Z. Elazar, “Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4,” The EMBO Journal, vol. 26, no. 7, pp. 1749–1760, 2007.
[58]  L. Yu, F. Wan, S. Dutta et al., “Autophagic programmed cell death by selective catalase degradation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 13, pp. 4952–4957, 2006.
[59]  G. Storz and B. S. Polla, “Transcriptional regulators of oxidative stress-inducible genes in prokaryotes and eukaryotes,” EXS, vol. 77, pp. 239–254, 1996.
[60]  J. Li, R. Liu, Y. Lei et al., “Proteomic analysis revealed association of aberrant ROS signaling with suberoylanilide hydroxamic acid-induced autophagy in jurkat T-leukemia cells,” Autophagy, vol. 6, no. 6, pp. 711–724, 2010.
[61]  C. T. Wallington-Beddoe, J. Hewson, K. F. Bradstock, and L. J. Bendall, “FTY720 produces caspase-independent cell death of acute lymphoblastic leukemia cells,” Autophagy, vol. 7, no. 7, pp. 707–715, 2011.
[62]  S. Ghavami, A. Asoodeh, T. Klonisch et al., “Brevinin-2R1 semi-selectively kills cancer cells by a distinct mechanism, which involves the lysosomal-mitochondrial death pathway,” Journal of Cellular and Molecular Medicine, vol. 12, no. 3, pp. 1005–1022, 2008.
[63]  T. Itoh, K. Ohguchi, Y. Nozawa, and Y. Akao, “Intracellular glutathione regulates sesquiterpene lactone-induced conversion of autophagy to apoptosis in human leukemia HL60 cells,” Anticancer Research, vol. 29, no. 4, pp. 1449–1457, 2009.
[64]  T. Itoh, Y. Ito, K. Ohguchi et al., “Eupalinin A isolated from Eupatorium chinense L. induces autophagocytosis in human leukemia HL60 cells,” Bioorganic and Medicinal Chemistry, vol. 16, no. 2, pp. 721–731, 2008.
[65]  F. Lozy and V. Karantza, “Autophagy and cancer cell metabolism,” Seminars in Cell and Developmental Biology, vol. 23, no. 4, pp. 395–401, 2012.
[66]  M. Yuneva, N. Zamboni, P. Oefner, R. Sachidanandam, and Y. Lazebnik, “Deficiency in glutamine but not glucose induces MYC-dependent apoptosis in human cells,” Journal of Cell Biology, vol. 178, no. 1, pp. 93–105, 2007.
[67]  C. H. Eng and R. T. Abraham, “Glutaminolysis yields a metabolic by-product that stimulates autophagy,” Autophagy, vol. 6, no. 7, pp. 968–970, 2010.
[68]  T. G. Sommermann, H. I. D. Mack, and E. Cahir-McFarland, “Autophagy prolongs survival after NFκB inhibition in B-cell lymphomas,” Autophagy, vol. 8, no. 2, pp. 252–264, 2012.
[69]  A. E. Lo Re, M. G. Fernandez-Barrena, L. L. Almada, et al., “A novel AKT1-GLI3-VMP1 pathway mediates KRAS-induced autophagy in cancer cells,” The Journal of Biological Chemistry. In press.
[70]  E. White, “Deconvoluting the context-dependent role for autophagy in cancer,” Nature Reviews Cancer, vol. 12, no. 6, pp. 401–410, 2012.
[71]  K. Bensaad, E. C. Cheung, and K. H. Vousden, “Modulation of intracellular ROS levels by TIGAR controls autophagy,” The EMBO Journal, vol. 28, no. 19, pp. 3015–3026, 2009.
[72]  E. Tasdemir, M. C. Maiuri, E. Morselli et al., “A dual role of p53 in the control of autophagy,” Autophagy, vol. 4, no. 6, pp. 810–814, 2008.
[73]  A. V. Budanov, J. H. Lee, and M. Karin, “Stressin' Sestrins take an aging fight,” EMBO Molecular Medicine, vol. 2, no. 10, pp. 388–400, 2010.
[74]  G. Pani and T. Galeotti, “Role of MnSOD and p66shc in mitochondrial response to p53,” Antioxidants and Redox Signaling, vol. 15, no. 6, pp. 1715–1727, 2011.
[75]  K. Bensaad, A. Tsuruta, M. A. Selak et al., “TIGAR, a p53-inducible regulator of glycolysis and apoptosis,” Cell, vol. 126, no. 1, pp. 107–120, 2006.
[76]  W. Hu, C. Zhang, R. Wu, Y. Sun, A. Levine, and Z. Feng, “Glutaminase 2, a novel p53 target gene regulating energy metabolism and antioxidant function,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 16, pp. 7455–7460, 2010.
[77]  S. Suzuki, T. Tanaka, M. V. Poyurovsky et al., “Phosphate-activated glutaminase (GLS2), a p53-inducible regulator of glutamine metabolism and reactive oxygen species,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 16, pp. 7461–7466, 2010.
[78]  A. V. Budanov and M. Karin, “p53 target genes sestrin1 and sestrin2 connect genotoxic stress and mTOR signaling,” Cell, vol. 134, no. 3, pp. 451–460, 2008.
[79]  E. Tasdemir, M. C. Maiuri, L. Galluzzi et al., “Regulation of autophagy by cytoplasmic p53,” Nature Cell Biology, vol. 10, no. 6, pp. 676–687, 2008.
[80]  K. P. Lai, W. F. Leong, J. F. L. Chau et al., “S6K1 is a multifaceted regulator of Mdm2 that connects nutrient status and DNA damage response,” The EMBO Journal, vol. 29, no. 17, pp. 2994–3006, 2010.
[81]  K. M. Livesey, R. Kang, P. Vernon et al., “p53/HMGB1 complexes regulate autophagy and apoptosis,” Cancer Research, vol. 72, no. 8, pp. 1996–2005, 2012.
[82]  J. Liu, H. Xia, M. Kim et al., “Beclin1 controls the levels of p53 by regulating the deubiquitination activity of USP10 and USP13,” Cell, vol. 147, no. 1, pp. 223–234, 2011.
[83]  M. C. Maiuri, L. Galluzzi, E. Morselli, O. Kepp, S. A. Malik, and G. Kroemer, “Autophagy regulation by p53,” Current Opinion in Cell Biology, vol. 22, no. 2, pp. 181–185, 2010.
[84]  R. Mathew and E. White, “Autophagy, stress, and cancer metabolism: what doesn't kill you makes you stronger,” Cold Spring Harbor Symposia on Quantitative Biology, vol. 76, pp. 389–396, 2011.
[85]  R. K. Amaravadi, J. Lippincott-Schwartz, X. M. Yin et al., “Principles and current strategies for targeting autophagy for cancer treatment,” Clinical Cancer Research, vol. 17, no. 4, pp. 654–666, 2011.
[86]  E. White and R. S. DiPaola, “The double-edged sword of autophagy modulation in cancer,” Clinical Cancer Research, vol. 15, no. 17, pp. 5308–5316, 2009.
[87]  R. K. Amaravadi, D. Yu, J. J. Lum et al., “Autophagy inhibition enhances therapy-induced apoptosis in a Myc-induced model of lymphoma,” The Journal of Clinical Investigation, vol. 117, no. 2, pp. 326–336, 2007.
[88]  K. H. Maclean, F. C. Dorsey, J. L. Cleveland, and M. B. Kastan, “Targeting lysosomal degradation induces p53-dependent cell death and prevents cancer in mouse models of lymphomagenesis,” The Journal of Clinical Investigation, vol. 118, no. 1, pp. 79–88, 2008.
[89]  D. J. Goussetis, J. K. Altman, H. Glaser, J. L. McNeer, M. S. Tallman, and L. C. Platanias, “Autophagy is a critical mechanism for the induction of the antileukemic effects of arsenic trioxide,” The Journal of Biological Chemistry, vol. 285, no. 39, pp. 29989–29997, 2010.
[90]  W. Qian, J. Liu, J. Jin, W. Ni, and W. Xu, “Arsenic trioxide induces not only apoptosis but also autophagic cell death in leukemia cell lines via up-regulation of Beclin-1,” Leukemia Research, vol. 31, no. 3, pp. 329–339, 2007.
[91]  V. Charoensuk, W. P. Gati, M. Weinfeld, and X. C. Le, “Differential cytotoxic effects of arsenic compounds in human acute promyelocytic leukemia cells,” Toxicology and Applied Pharmacology, vol. 239, no. 1, pp. 64–70, 2009.
[92]  P. Isakson, M. Bj?r?s, S. O. B?e, and A. Simonsen, “Autophagy contributes to therapy-induced degradation of the PML/RARA oncoprotein,” Blood, vol. 116, no. 13, pp. 2324–2331, 2010.
[93]  F. Chiarini, C. Grimaldi, F. Ricci et al., “Activity of the novel dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor NVP-BEZ235 against T-cell acute lymphoblastic leukemia,” Cancer Research, vol. 70, no. 20, pp. 8097–8107, 2010.
[94]  R. Crazzolara, K. F. Bradstock, and L. J. Bendall, “RAD001 (everolimus) induces autophagy in acute lymphoblastic leukemia,” Autophagy, vol. 5, no. 5, pp. 727–728, 2009.
[95]  R. Crazzolara, A. Cisterne, M. Thien et al., “Potentiating effects of RAD001 (Everolimus) on vincristine therapy in childhood acute lymphoblastic leukemia,” Blood, vol. 113, no. 14, pp. 3297–3306, 2009.
[96]  A. Puissant and P. Auberger, “AMPK- and p62/SQSTM1-dependent autophagy mediate resveratrol-induced cell death in chronic myelogenous leukemia,” Autophagy, vol. 6, no. 5, pp. 655–657, 2010.
[97]  A. Puissant, G. Robert, and P. Auberger, “Targeting autophagy to fight hematopoietic malignancies,” Cell Cycle, vol. 9, no. 17, pp. 3470–3478, 2010.
[98]  J. S. Carew, S. T. Nawrocki, F. J. Giles, and J. L. Cleveland, “Targeting autophagy: a novel anticancer strategy with therapeutic implications for imatinib resistance,” Biologics, vol. 2, no. 2, pp. 201–204, 2008.
[99]  J. S. Carew, S. T. Nawrocki, C. N. Kahue et al., “Targeting autophagy augments the anticancer activity of the histone deacetylase inhibitor SAHAto overcome Bcr-Abl-mediated drug resistance,” Blood, vol. 110, no. 1, pp. 313–322, 2007.
[100]  T. A. Burns and C. Luberto, “Sphingolipid metabolism and leukemia: a potential for novel therapeutic approaches,” Anti-Cancer Agents in Medicinal Chemistry, vol. 11, no. 9, pp. 863–881, 2011.
[101]  D. Grandér, P. Kharaziha, E. Laane, K. Pokrovskaja, and T. Panaretakis, “Autophagy as the main means of cytotoxicity by glucocorticoids in hematological malignancies,” Autophagy, vol. 5, no. 8, pp. 1198–1200, 2009.
[102]  T. Tomic, T. Botton, M. Cerezo et al., “Metformin inhibits melanoma development through autophagy and apoptosis mechanisms,” Cell Death and Disease, vol. 2, no. 9, article e199, 2011.
[103]  W.-Y. Shi, D. Xiao, L. Wang et al., “Therapeutic metformin/AMPK activation blocked lymphoma cell growth via inhibition of mTOR pathway and induction of autophagy,” Cell Death and Disease, vol. 3, no. 3, article e275, 2012.
[104]  C. Grimaldi, F. Chiarini, G. Tabellini et al., “AMP-dependent kinase/mammalian target of rapamycin complex 1 signaling in T-cell acute lymphoblastic leukemia: therapeutic implications,” Leukemia, vol. 26, no. 1, pp. 91–100, 2012.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133