全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

The Microenvironmental Effect in the Progression, Metastasis, and Dormancy of Breast Cancer: A Model System within Bone Marrow

DOI: 10.1155/2012/721659

Full-Text   Cite this paper   Add to My Lib

Abstract:

Despite diagnostic advances, breast cancer remains the most prevalent cancer among women in the United States. The armamentarium of treatment options for metastatic disease is limited and mostly ineffective with regards to eradicating cancer. However, there have been novel findings in the recent literature that substantiate the function of the microenvironment in breast cancer progression and the support of metastasis to tertiary sites such as bone marrow. The uncovered significance of the microenvironment in the pathophysiology of breast cancer metastasis has served to challenge previously widespread theories and introduce new perspectives for the future research to eradicate breast cancer. This paper delineates the current understanding of the molecular mechanisms involved in the interactions between breast cancer cells and the microenvironment in progression, metastasis, and dormancy. The information, in addition to other mechanisms described in bone marrow, is discussed in the paper. 1. Introduction The ability to invade and metastasize allows cancer cells to leave sites of primary tumor formation and recolonize in new tissues. This offers immediate metastasis to distant sites as well as the establishment of dormancy. Metastases are responsible for approximately 90% of human cancer deaths [1]. The previously established theory on metastasis described the phenomenon as a process alike to the Darwinian evolution [2]. In that perspective, cancer cells undergo a process of natural selection which favors rare cells within a tumor capable of invading and growing at sites of metastasis. The natural selection was believed to involve the development of stable genetic alterations which proffer the potential for successful metastasis. However, advances in technology, especially the development of high-throughput microarray expression profiling and in vivo imaging, have served to challenge this perspective of cancer metastasis [2]. Research suggests that metastatic ability is gained at earlier stages of tumor expansion than predicted by the previous model, and that this ability is acquired through transient changes in gene expression. A new tumor microenvironment invasion model reconciles the Darwinian perspective with recent discoveries. The tumor microenvironment consists of surrounding stroma, which is composed of extracellular matrix and various cell types including endothelial cells, fibroblasts, and infiltrative leukocytes. The microenvironment, in addition to providing a scaffold for the organ, has been found to play a significant role in breast cell

References

[1]  D. Hanahan and R. A. Weinberg, “Hallmarks of cancer: the next generation,” Cell, vol. 144, no. 5, pp. 646–674, 2011.
[2]  F. Gertler and J. Condeelis, “Metastasis: tumor cells becoming MENAcing,” Trends in Cell Biology, vol. 21, no. 2, pp. 81–90, 2011.
[3]  K. Polyak and R. Kalluri, “The role of the microenvironment in mammary gland development and cancer,” Cold Spring Harbor Perspectives in Biology, vol. 2, no. 11, Article ID a003244, 2010.
[4]  W. Wang, S. Goswami, E. Sahai, J. B. Wyckoff, J. E. Segall, and J. S. Condeelis, “Tumor cells caught in the act of invading: their strategy for enhanced cell motility,” Trends in Cell Biology, vol. 15, no. 3, pp. 138–145, 2005.
[5]  J. Condeelis and J. E. Segall, “Intravital imaging of cell movement in tumours,” Nature Reviews Cancer, vol. 3, no. 12, pp. 921–930, 2003.
[6]  J. W. Uhr and K. Pantel, “Controversies in clinical cancer dormancy,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 30, pp. 12396–12400, 2011.
[7]  J. E. Talmadge, “Clonal selection of metastasis within the life history of a tumor,” Cancer Research, vol. 67, no. 24, pp. 11471–11475, 2007.
[8]  J. L. Mansi, U. Berger, T. McDonnell et al., “The fate of bone marrow micrometastases in patients with primary breast cancer,” Journal of Clinical Oncology, vol. 7, no. 4, pp. 445–449, 1989.
[9]  M. Habeck, “Bone-marrow analysis predicts breast-cancer recurrence,” Molecular Medicine Today, vol. 6, no. 7, pp. 256–257, 2000.
[10]  S. Braun, D. Auer, and C. Marth, “The prognostic impact of bone marrow micrometastases in women with breast cancer,” Cancer Investigation, vol. 27, no. 6, pp. 598–603, 2009.
[11]  H. S. Oh, A. Moharita, J. G. Potian et al., “Bone marrow stroma influences transforming growth factor-β production in breast cancer cells to regulate c-myc activation of the preprotachykinin-I gene in breast cancer cells,” Cancer Research, vol. 64, no. 17, pp. 6327–6336, 2004.
[12]  S. H. Ramkissoon, P. S. Patel, M. Taborga, and P. Rameshwar, “Nuclear factor-κB is central to the expression of truncated neurokinin-1 receptor in breast cancer: implication for breast cancer cell quiescence within bone marrow stroma,” Cancer Research, vol. 67, no. 4, pp. 1653–1659, 2007.
[13]  G. Rao, P. S. Patel, S. P. Idler et al., “Facilitating role of preprotachykinin-I gene in the integration of breast cancer cells within the stromal compartment of the bone marrow: a model of early cancer progression,” Cancer Research, vol. 64, no. 8, pp. 2874–2881, 2004.
[14]  B. Y. Reddy, S. J. Greco, P. S. Patel, K. A. Trzaska, and P. Rameshwar, “RE-1-silencing transcription factor shows tumor-suppressor functions and negatively regulates the oncogenic TAC1 in breast cancer cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 11, pp. 4408–4413, 2009.
[15]  X. Lu, Q. Wang, G. Hu et al., “ADAMTS1 and MMP1 proteolytically engage EGF-like ligands in an osteolytic signaling cascade for bone metastasis,” Genes and Development, vol. 23, no. 16, pp. 1882–1894, 2009.
[16]  P. K. Lim, S. A. Bliss, S. A. Patel et al., “Gap junction-mediated import of microRNA from bone marrow stromal cells can elicit cell cycle quiescence in breast cancer cells,” Cancer Research, vol. 71, no. 5, pp. 1550–1560, 2011.
[17]  A. L. Moharita, M. Taborga, K. E. Corcoran, M. Bryan, P. S. Patel, and P. Rameshwar, “SDF-1α regulation in breast cancer cells contacting bone marrow stroma is critical for normal hematopoiesis,” Blood, vol. 108, no. 10, pp. 3245–3252, 2006.
[18]  H. F. Dvorak, V. M. Weaver, T. D. Tlsty, and G. Bergers, “Tumor microenvironment and progression,” Journal of Surgical Oncology, vol. 103, no. 6, pp. 468–474, 2011.
[19]  P. Micke and A. ?stman, “Exploring the tumour environment: cancer-associated fibroblasts as targets in cancer therapy,” Expert Opinion on Therapeutic Targets, vol. 9, no. 6, pp. 1217–1233, 2005.
[20]  M. J. Bissell and W. C. Hines, “Why don't we get more cancer? A proposed role of the microenvironment in restraining cancer progression,” Nature Medicine, vol. 17, no. 3, pp. 320–329, 2011.
[21]  F. Dai, L. Liu, G. Che et al., “The number and microlocalization of tumor-associated immune cells are associated with patient's survival time in non-small cell lung cancer,” BMC Cancer, vol. 10, article 220, 2010.
[22]  L. R?nnov-Jessen and M. J. Bissell, “Breast cancer by proxy: can the microenvironment be both the cause and consequence?” Trends in Molecular Medicine, vol. 15, no. 1, pp. 5–13, 2009.
[23]  S. Liu, C. Ginestier, S. J. Ou et al., “Breast cancer stem cells are regulated by mesenchymal stem cells through cytokine networks,” Cancer Research, vol. 71, no. 2, pp. 614–624, 2011.
[24]  B. Dirat, L. Bochet, M. Dabek et al., “Cancer-associated adipocytes exhibit an activated phenotype and contribute to breast cancer invasion,” Cancer Research, vol. 71, no. 7, pp. 2455–2465, 2011.
[25]  C. Porta, E. Riboldi, and A. Sica, “Mechanisms linking pathogens-associated inflammation and cancer,” Cancer Letters, vol. 305, no. 2, pp. 250–262, 2011.
[26]  N. Kobayashi, S. Miyoshi, T. Mikami et al., “Hyaluronan deficiency in tumor stroma impairs macrophage trafficking and tumor neovascularization,” Cancer Research, vol. 70, no. 18, pp. 7073–7083, 2010.
[27]  I. Espinosa, C. M. Jose, L. Catasus et al., “Myometrial invasion and lymph node metastasis in endometrioid carcinomas: tumor-associated macrophages, microvessel density, and HIF1A have a crucial role,” The American Journal of Surgical Pathology, vol. 34, no. 11, pp. 1708–1714, 2010.
[28]  A. Sica, C. Porta, E. Riboldi, and M. Locati, “Convergent pathways of macrophage polarization: the role of B cells,” European Journal of Immunology, vol. 40, no. 8, pp. 2131–2133, 2010.
[29]  J. Chen, Y. Yao, C. Gong et al., “CCL18 from tumor-associated macrophages promotes breast cancer metastasis via PITPNM3,” Cancer Cell, vol. 19, no. 4, pp. 541–555, 2011.
[30]  C. la Vecchia, S. H. Giordano, G. N. Hortobagyi, and B. Chabner, “Overweight, obesity, diabetes, and risk of breast cancer: interlocking pieces of the puzzle,” Oncologist, vol. 16, no. 6, pp. 726–729, 2011.
[31]  M. Locke, V. Feisst, and P. R. Dunbar, “Concise review: human adipose-derived stem cells: separating promise from clinical need,” Stem Cells, vol. 29, no. 3, pp. 404–411, 2011.
[32]  P. J. Mishra, P. J. Mishra, J. W. Glod, and D. Banerjee, “Mesenchymal stem cells: Flip side of the coin,” Cancer Research, vol. 69, no. 4, pp. 1255–1258, 2009.
[33]  P. J. Mishra, P. J. Mishra, R. Humeniuk et al., “Carcinoma-associated fibroblast-like differentiation of human mesenchymal stem cells,” Cancer Research, vol. 68, no. 11, pp. 4331–4339, 2008.
[34]  S. Y. Lin, J. Yang, A. D. Everett et al., “The isolation of novel mesenchymal stromal cell chemotactic factors from the conditioned medium of tumor cells,” Experimental Cell Research, vol. 314, no. 17, pp. 3107–3117, 2008.
[35]  D. Liao, Y. Luo, D. Markowitz, R. Xiang, and R. A. Reisfeld, “Cancer associated fibroblasts promote tumor growth and metastasis by modulating the tumor immune microenvironment in a 4T1 murine breast cancer model,” PLoS ONE, vol. 4, no. 11, Article ID e7965, 2009.
[36]  S. A. Patel, J. R. Meyer, S. J. Greco, K. E. Corcoran, M. Bryan, and P. Rameshwar, “Mesenchymal stem cells protect breast cancer cells through regulatory T cells: role of mesenchymal stem cell-derived TGF-β,” Journal of Immunology, vol. 184, no. 10, pp. 5885–5894, 2010.
[37]  B. L. Mundy-Bosse, L. M. Thornton, H.-C. Yang, B. L. Andersen, and W. E. Carson, “Psychological stress is associated with altered levels of myeloid-derived suppressor cells in breast cancer patients,” Cellular Immunology, vol. 270, no. 1, pp. 80–87, 2011.
[38]  C. E. Steding, S.-T. Wu, Y. Zhang, M.-H. Jeng, B. D. Elzey, and C. Kao, “The role of interleukin-12 on modulating myeloid-derived suppressor cells, increasing overall survival and reducing metastasis,” Immunology, vol. 133, no. 2, pp. 221–238, 2011.
[39]  C. M. Diaz-Montero, M. L. Salem, M. I. Nishimura, E. Garrett-Mayer, D. J. Cole, and A. J. Montero, “Increased circulating myeloid-derived suppressor cells correlate with clinical cancer stage, metastatic tumor burden, and doxorubicin-cyclophosphamide chemotherapy,” Cancer Immunology, Immunotherapy, vol. 58, no. 1, pp. 49–59, 2009.
[40]  M. Chmielewski, C. Kopecky, A. A. Hombach, and H. Abken, “IL-12 release by engineered T cells expressing chimeric antigen receptors can effectively muster an antigen-independent macrophage response on tumor cells that have shut down tumor antigen expression,” Cancer Research, vol. 71, no. 17, pp. 5697–5706, 2011.
[41]  D. T. Butcher, T. Alliston, and V. M. Weaver, “A tense situation: forcing tumour progression,” Nature Reviews Cancer, vol. 9, no. 2, pp. 108–122, 2009.
[42]  S. A. Patel, M. A. Dave, R. G. Murthy, K. Y. Helmy, and P. Rameshwar, “Metastatic breast cancer cells in the bone marrow microenvironment: novel insights into oncoprotection,” Oncology Reviews, vol. 5, no. 2, pp. 93–102, 2011.
[43]  S. A. Patel, A. Ndabahaliye, P. K. Lim, R. Milton, and P. Rameshwar, “Challenges in the development of future treatments for breast cancer stem cells,” Breast Cancer, vol. 2, pp. 1–11, 2010.
[44]  I. Moen, A. M. ?yan, K. H. Kalland et al., “Hyperoxic treatment induces mesenchymal-to-epithelial transition in a rat adenocarcinoma model,” PLoS ONE, vol. 4, no. 7, Article ID e6381, 2009.
[45]  B. G. Hollier, K. Evans, and S. A. Mani, “The epithelial-to-mesenchymal transition and cancer stem cells: a coalition against cancer therapies,” Journal of Mammary Gland Biology and Neoplasia, vol. 14, no. 1, pp. 29–43, 2009.
[46]  P. Tang, X. Wang, L. Schiffhauer et al., “Relationship between nuclear grade of ductal carcinoma in situ and cell origin markers,” Annals of Clinical and Laboratory Science, vol. 36, no. 1, pp. 16–22, 2006.
[47]  Y. Ge, N. Sneige, M. A. Eltorky et al., “Immunohistochemical characterization of subtypes of male breast carcinoma,” Breast Cancer Research, vol. 11, no. 3, article R28, 2009.
[48]  S. Liu, G. Dontu, I. D. Mantle et al., “Hedgehog signaling and Bmi-1 regulate self-renewal of normal and malignant human mammary stem cells,” Cancer Research, vol. 66, no. 12, pp. 6063–6071, 2006.
[49]  P. Rameshwar, “Breast cancer cell dormancy in bone marrow: potential therapeutic targets within the marrow microenvironment,” Expert Review of Anticancer Therapy, vol. 10, no. 2, pp. 129–132, 2010.
[50]  M. J. Kiel and S. J. Morrison, “Uncertainty in the niches that maintain haematopoietic stem cells,” Nature Reviews Immunology, vol. 8, no. 4, pp. 290–301, 2008.
[51]  M. E. Davis, J. E. Zuckerman, C. H. J. Choi et al., “Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles,” Nature, vol. 464, no. 7291, pp. 1067–1070, 2010.
[52]  Q. Zhang, S. Shi, Y. Liu et al., “Mesenchymal stem cells derived from human gingiva are capable of immunomodulatory functions and ameliorate inflammation-related tissue destruction in experimental colitis,” Journal of Immunology, vol. 183, no. 12, pp. 7787–7798, 2009.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133