The Role of Large-Format Histopathology in Assessing Subgross Morphological Prognostic Parameters: A Single Institution Report of 1000 Consecutive Breast Cancer Cases
Breast cancer subgross morphological parameters (disease extent, lesion distribution, and tumor size) provide significant prognostic information and guide therapeutic decisions. Modern multimodality radiological imaging can determine these parameters with increasing accuracy in most patients. Large-format histopathology preserves the spatial relationship of the tumor components and their relationship to the resection margins and has clear advantages over traditional routine pathology techniques. We report a series of 1000 consecutive breast cancer cases worked up with large-format histology with detailed radiological-pathological correlation. We confirmed that breast carcinomas often exhibit complex subgross morphology in both early and advanced stages. Half of the cases were extensive tumors and occupied a tissue space ≥40?mm in its largest dimension. Because both in situ and invasive tumor components may exhibit unifocal, multifocal, and diffuse lesion distribution, 17 different breast cancer growth patterns can be observed. Combining in situ and invasive tumor components, most cases fall into three aggregate growth patterns: unifocal (36%), multifocal (35%), and diffuse (28%). Large-format histology categories of tumor size and disease extent were concordant with radiological measurements in approximately 80% of the cases. Noncalcified, low-grade in situ foci, and invasive tumor foci <5?mm were the most frequent causes of discrepant findings. 1. Introduction Breast cancer is a heterogeneous group of diseases which deviate from each other in natural history, morphology, molecular phenotype, clinical and radiological manifestations, and prognosis. Prognostic parameters are essential for predicting the outcome and response to therapy in individual cases. The long list of more or less powerful prognostic parameters that includes patient age, mode of detection, tumor size, histologic grade, lymph node status, and presence or absence of distant metastases was recently widened with molecular tumor phenotypes assessed with either genetic tests or immunohistochemistry. Since the number of therapeutic options is rather limited, the parameters for which assessment is routinely required for therapeutic decisions are also few. Whereas hormone receptor status, HER-2 status, and proliferative activity are the major determinants of oncological therapy, proper characterization of the subgross morphology of breast carcinoma is essential for planning appropriate surgery and radiation therapy [1–4]. The prognostic significance of subgross parameters is also observed [1,
References
[1]
R. Holland, S. H. J. Veling, M. Mravunac, and J. H. C. L. Hendriks, “Histologic multifocality of Tis, T1-2 breast carcinomas: implications for clinical trials of breast-conserving surgery,” Cancer, vol. 56, no. 5, pp. 979–990, 1985.
[2]
G. Vlastos, I. T. Rubio, N. Q. Mirza et al., “Impact of multicentricity on clinical outcome in patients with T1-2, N0-1, M0 breast cancer,” Annals of Surgical Oncology, vol. 7, no. 8, pp. 581–587, 2000.
[3]
A. Katz, E. A. Strom, T. A. Buchholz, R. Theriault, S. E. Singletary, and M. D. McNeese, “The influence of pathologic tumor characteristics on locoregional recurrence rates following mastectomy,” International Journal of Radiation Oncology Biology Physics, vol. 50, no. 3, pp. 735–742, 2001.
[4]
T. Tot, “Subgross morphology, the sick lobe hypothesis, and the success of breast conservation,” International Journal of Breast Cancer, vol. 2011, Article ID 634021, 8 pages, 2011.
[5]
T. Tot, L. Tabár, and P. B. Dean, Practical Breast Pathology, Thieme, New York, NY, USA, 2002.
[6]
L. Tabár, T. Tot, and P. B. Dean, Breast Cancer: The Art and Science of Early Detection with Mammography, Thieme, New York, NY, USA, 2005.
[7]
T. Tot and L. Tabár, “The role of radiological-pathological correlation in diagnosing early breast cancer: the pathologist's perspective,” Virchows Archiv, vol. 458, no. 2, pp. 125–131, 2011.
[8]
T. Tot and M. Gere, “Radiological-pathological correlation in diagnosing breast carcinoma: the role of pathology in the multimodality era,” Pathology and Oncology Research, vol. 14, no. 2, pp. 173–178, 2008.
[9]
F. L. Tucker, “New era pathologic techniques in the diagnosis and reporting of breast cancers,” Seminars in Breast Disease, vol. 11, no. 3, pp. 140–147, 2008.
[10]
K. W. Biesemier and M. C. Alexander, “Enhancement of mammographic-pathologic correlation utilizing large format histology for malignant breast disease,” Seminars in Breast Disease, vol. 8, no. 3, pp. 152–162, 2006.
[11]
T. Tot, “Large-format histology, a prerequisite for adequate assessment of early breast carcinomas,” in Breast Cancer, A Heterogeneous Disease Entity, Z. Kahán and T. Tot, Eds., pp. 57–88, Springer, London, UK, 2011.
[12]
J. A. Ibarra, A. Sie, J. S. Link, and R. Reitherman, “Neoadjuvant chemotherapy: mammographic-pathologic correlation,” Seminars in Breast Disease, vol. 8, no. 3, pp. 163–175, 2005.
[13]
G. M. Clarke, S. Eidt, L. Sun, G. Mawdsley, J. T. Zubovits, and M. J. Yaffe, “Whole-specimen histopathology: a method to produce whole-mount breast serial sections for 3-D digital histopathology imaging,” Histopathology, vol. 50, no. 2, pp. 232–242, 2007.
[14]
T. Tot, “Cost-benefit analysis of using large-format histology sections in routine diagnostic breast care,” Breast, vol. 19, no. 4, pp. 284–288, 2010.
[15]
M. Morrow, “Margins in breast-conserving therapy: have we lost sight of the big picture?” Expert Review of Anticancer Therapy, vol. 8, no. 8, pp. 1193–1196, 2008.
[16]
D. Lindquist and T. Tot, “Disease extent ≥4?cm is a prognostic marker of local recurrence in T1-2 breast cancer,” Pathology Research International, vol. 2011, Article ID 860584, 6 pages, 2011.
[17]
T. Tot, M. Gere, G. Pekár et al., “Breast cancer multifocality, disease extent, and survival,” Human Pathology, vol. 42, no. 11, pp. 1761–1769, 2011.
[18]
T. Tot, “DCIS, cytokeratins, and the theory of the sick lobe,” Virchows Archiv, vol. 447, no. 1, pp. 1–8, 2005.
[19]
T. Tot, “The theory of the sick lobe,” in Breast Cancer: A Lobar Disease, T. Tot, Ed., pp. 1–18, Springer, London, UK, 2011.
[20]
A. Grin, M. Ennis, F. P. O'Malley, and G. Horne, “Measuring extent of ductal carcinoma in situ in breast excision specimens: a comparison of 4 methods,” Archives of Pathology & Laboratory Medicine, vol. 133, no. 1, pp. 31–37, 2009.
[21]
F. Dadmanesh, X. Fan, A. Dastane, M. B. Amin, and S. Bose, “Comparative analysis of size estimation by mapping and counting number of blocks with ductal carcinoma in situ in breast excision specimens,” Archives of Pathology & Laboratory Medicine, vol. 133, no. 1, pp. 26–30, 2009.
[22]
T. Tot, “Clinical relevance of the distribution of the lesions in 500 consecutive breast cancer cases documented in large-format histologic sections,” Cancer, vol. 110, no. 11, pp. 2551–2560, 2007.
[23]
J. Boyages, U. W. Jayasinghe, and N. Coombs, “Multifocal breast cancer and survival: each focus does matter particularly for larger tumours,” European Journal of Cancer, vol. 46, no. 11, pp. 1990–1996, 2010.
[24]
G. Cserni, R. Bori, I. Sejben, et al., “Unifocal, multifocal and diffuse carcinomas: a reproducibility study of breast cancer distribution,” The Breast. In press.
[25]
AJCC Cancer Staging Handbook, Springer, New York, NY, USA, 7th edition, 2010.
[26]
G. Cserni, “Commentary on in-transit lymph node metastases in breast cancer: a possible source of local recurrence after Sentinel Node procedure,” Journal of Clinical Pathology, vol. 61, no. 12, pp. 1233–1235, 2008.
[27]
T. Tot, “The diffuse type of invasive lobular carcinoma of the breast: morphology and prognosis,” Virchows Archiv, vol. 443, no. 6, pp. 718–724, 2003.
[28]
T. Tot, G. Pekár, S. Hofmeyer, T. Sollie, M. Gere, and M. Tarján, “The distribution of lesions in 1-14-mm invasive breast carcinomas and its relation to metastatic potential,” Virchows Archiv, vol. 455, no. 2, pp. 109–115, 2009.
[29]
T. Tot, “The metastatic capacity of multifocal breast carcinomas: extensive tumors versus tumors of limited extent,” Human Pathology, vol. 40, no. 2, pp. 199–205, 2009.
[30]
T. Tot and G. Pekár, “Multifocality in “basal-like” breast carcinomas and its influence on lymph node status,” Annals of Surgical Oncology, vol. 18, no. 6, pp. 1671–1677, 2011.
[31]
P. A. Jackson, W. Merchant, C. J. McCormick, and M. G. Cook, “A comparison of large block macrosectioning and conventional techniques in breast pathology,” Virchows Archiv, vol. 425, no. 3, pp. 243–248, 1994.
[32]
M. P. Foschini, F. Flamminio, R. Miglio et al., “The impact of large sections on the study of in situ and invasive duct carcinoma of the breast,” Human Pathology, vol. 38, no. 12, pp. 1736–1743, 2007.
[33]
N. J. Coombs and J. Boyages, “Multifocal and multicentric breast cancer: does each focus matter?” Journal of Clinical Oncology, vol. 23, no. 30, pp. 7497–7502, 2005.
[34]
A. A. Andea, T. Wallis, L. A. Newman, D. Bouwman, J. Dey, and D. W. Visscher, “Pathologic analysis of tumor size and lymph node status in multifocal/multicentric breast carcinoma,” Cancer, vol. 94, no. 5, pp. 1383–1390, 2002.
[35]
T. Tot, “Axillary lymph node status in unifocal, multifocal, and diffuse breast carcinomas: differences are related to macrometastatic disease,” Annals of Surgical Oncology, vol. 19, no. 11, pp. 3395–3401, 2012.
[36]
R. L. Egan, “Multicentric breast carcinomas: clinical-radiographic-pathologic whole organ studies and 10-year survival,” Cancer, vol. 49, no. 6, pp. 1123–1130, 1982.
[37]
T. M. Weissenbacher, M. Zschage, W. Janni et al., “Multicentric and multifocal versus unifocal breast cancer: is the tumor-node-metastasis classification justified?” Breast Cancer Research and Treatment, vol. 122, no. 1, pp. 27–34, 2010.
[38]
L. Tabár, B. Vitak, T. H. Chen, et al., “Swedish two-county trial: impact of mammographic screening on breast cancer mortality during 3 decades,” Radiology, vol. 260, no. 3, pp. 658–663, 2011.
[39]
L. Tabar, H. H. T. Chen, M. F. A. Yen et al., “Mammographic tumor features can predict long-term outcomes reliably in women with 1-14-mm invasive breast carcinoma: suggestions for the reconsideration of current therapeutic practice and the TNM classification system,” Cancer, vol. 101, no. 8, pp. 1745–1759, 2004.
[40]
T. Tot and Z. Kahán, “New approach to early breast cancer,” in Breast Cancer, A Heterogeneous Disease Entity, Z. Kahán and T. Tot, Eds., pp. 1–22, Springer, London, UK, 2011.
[41]
J. D. M. Otten, M. J. M. Broeders, G. J. Den Heeten et al., “Life expectancy of screen-detected invasive breast cancer patients compared with women invited to the Nijmegen Screening Program,” Cancer, vol. 116, no. 3, pp. 586–591, 2010.