全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Rapid Heterotrophic Ossification with Cryopreserved Poly(ethylene glycol-) Microencapsulated BMP2-Expressing MSCs

DOI: 10.1155/2012/861794

Full-Text   Cite this paper   Add to My Lib

Abstract:

Autologous bone grafting is the most effective treatment for long-bone nonunions, but it poses considerable risks to donors, necessitating the development of alternative therapeutics. Poly(ethylene glycol) (PEG) microencapsulation and BMP2 transgene delivery are being developed together to induce rapid bone formation. However, methods to make these treatments available for clinical applications are presently lacking. In this study we used mesenchymal stem cells (MSCs) due to their ease of harvest, replication potential, and immunomodulatory capabilities. MSCs were from sheep and pig due to their appeal as large animal models for bone nonunion. We demonstrated that cryopreservation of these microencapsulated MSCs did not affect their cell viability, adenoviral BMP2 production, or ability to initiate bone formation. Additionally, microspheres showed no appreciable damage from cryopreservation when examined with light and electron microscopy. These results validate the use of cryopreservation in preserving the viability and functionality of PEG-encapsulated BMP2-transduced MSCs. 1. Introduction Bone is the second most transplanted tissue behind blood transfusions [1] with 500,000 people in the US and 2.2 million people worldwide receiving bone grafts per year [2]. Autologous bone grafting is currently considered the gold standard for treating nonhealing fractures [3], but multiple features make it less than ideal for long bone nonunion treatment. The most promising graft donor site, the iliac crest, is available in limited quantities [4]. Since long bone nonunions can require up to 30?mLs of marrow, the amount harvested from the iliac crest can be insufficient [5]. Bone grafting presents considerable risks to patients by increased surgical times and blood loss [6], with 1/3 of patients experiencing chronic pain 24 months after transplant [7], and recipients are at increased risk for donor site instability and fractures [8]. Additionally, large bone defects, like those received by soldiers injured in combat [9, 10], often do not heal without surgical intervention and can end in an undesirable outcome such as amputation [11]. Bone morphogenetic protein 2 (BMP2) is a potential therapeutic that can fill the need for bone healing. Recombinant BMP2 can induce rapid ossification in orthopedic applications [12, 13] but has a relatively short half-life, must be administered at high dosages, and continually maintained to promote extensive and expedited bone regeneration [14–16]. Having a fast and maintained release/production of BMP2 as an off the shelf therapeutic

References

[1]  D. M. Ehrler and A. R. Vaccaro, “The use of allograft bone in lumbar spine surgery,” Clinical Orthopaedics and Related Research, no. 371, pp. 38–45, 2000.
[2]  P. V. Giannoudis, H. Dinopoulos, and E. Tsiridis, “Bone substitutes: an update,” Injury., vol. 36, supplement 3, pp. S20–27, 2005.
[3]  M. K. Sen and T. Miclau, “Autologous iliac crest bone graft: should it still be the gold standard for treating nonunions?” Injury, vol. 38, no. 1, supplement 1, pp. S75–S80, 2007.
[4]  C. G. Finkemeier, “Bone-grafting and bone-graft substitutes,” Journal of Bone and Joint Surgery, vol. 84, no. 3, pp. 454–464, 2002.
[5]  M. W. Chapman, R. Bucholz, and C. Cornell, “Treatment of acute fractures with a collagen-calcium phosphate graft material: a randomized clinical trial,” Journal of Bone and Joint Surgery, vol. 79, no. 4, pp. 495–502, 1997.
[6]  S. N. Khan, F. P. Cammisa, H. S. Sandhu, A. D. Diwan, F. P. Girardi, and J. M. Lane, “The biology of bone grafting,” The Journal of the American Academy of Orthopaedic Surgeons, vol. 13, no. 1, pp. 77–86, 2005.
[7]  R. C. Sasso, J. C. LeHuec, and C. Shaffrey, “Iliac crest bone graft donor site pain after anterior lumbar interbody fusion: a prospective patient satisfaction outcome assessment,” Journal of Spinal Disorders and Techniques, vol. 18, no. 1, supplement, pp. S77–S81, 2005.
[8]  J. C. Banwart, M. A. Asher, and R. S. Hassanein, “Iliac crest bone graft harvest donor site morbidity: a statistical evaluation,” Spine, vol. 20, no. 9, pp. 1055–1060, 1995.
[9]  P. J. Belmont, A. J. Schoenfeld, and G. Goodman, “Epidemiology of combat wounds in operation Iraqi freedom and operation Enduring freedom: orthopaedic burden of disease,” Journal of Surgical Orthopaedic Advances, vol. 19, no. 1, pp. 2–7, 2010.
[10]  P. J. Belmont, D. Thomas, G. P. Goodman et al., “Combat musculoskeletal wounds in a US army brigade combat team during operation iraqi freedom,” The Journal of Trauma, vol. 71, no. 1, pp. E1–E7, 2011.
[11]  E. M.M. Van Lieshout, G. H. Van Kralingen, Y. El-Massoudi, H. Weinans, and P. Patka, “Microstructure and biomechanical characteristics of bone substitutes for trauma and orthopaedic surgery,” BMC Musculoskeletal Disorders, vol. 12, p. 34, 2011.
[12]  F. Mussano, G. Ciccone, M. Ceccarelli, I. Baldi, and F. Bassi, “Bone morphogenetic proteins and bone defects: a systematic review,” Spine, vol. 32, no. 7, pp. 824–830, 2007.
[13]  C. H. Evans, “Gene therapy for bone healing,” Expert Reviews in Molecular Medicine, vol. 12, p. e18, 2010.
[14]  B. Zhao, T. Katagiri, H. Toyoda et al., “Heparin potentiates the in Vivo ectopic bone formation induced by bone morphogenetic protein-2,” Journal of Biological Chemistry, vol. 281, no. 32, pp. 23246–23253, 2006.
[15]  A. L. Jones, R. W. Bucholz, M. J. Bosse et al., “Recombinant human BMP-2 and allograft compared with autogenous bone graft for reconstruction of diaphyseal tibial fractures with cortical defects: a randomized, controlled trial,” Journal of Bone and Joint Surgery, vol. 88, no. 7, pp. 1431–1441, 2006.
[16]  O. Jeon, S. J. Song, H. S. Yang et al., “Long-term delivery enhances in vivo osteogenic efficacy of bone morphogenetic protein-2 compared to short-term delivery,” Biochemical and Biophysical Research Communications, vol. 369, no. 2, pp. 774–780, 2008.
[17]  D. J. Prockop, “Marrow stromal cells as stem cells for nonhematopoietic tissues,” Science, vol. 276, no. 5309, pp. 71–74, 1997.
[18]  P. A. Zuk, M. Zhu, H. Mizuno et al., “Multilineage cells from human adipose tissue: implications for cell-based therapies,” Tissue Engineering, vol. 7, no. 2, pp. 211–228, 2001.
[19]  M. F. Pittenger, A. M. Mackay, S. C. Beck et al., “Multilineage potential of adult human mesenchymal stem cells,” Science, vol. 284, no. 5411, pp. 143–147, 1999.
[20]  M. Krampera, L. Cosmi, R. Angeli et al., “Role for interferon-γ in the immunomodulatory activity of human bone marrow mesenchymal stem cells,” Stem Cells, vol. 24, no. 2, pp. 386–398, 2006.
[21]  A. Hilfiker, C. Kasper, R. Hass, and A. Haverich, “Mesenchymal stem cells and progenitor cells in connective tissue engineering and regenerative medicine: is there a future for transplantation?” Langenbeck's Archives of Surgery, vol. 396, no. 4, pp. 489–497, 2011.
[22]  A. H. Undale, J. J. Westendorf, M. J. Yaszemski, and S. Khosla, “Mesenchymal stem cells for bone repair and metabolic bone diseases,” Mayo Clinic Proceedings, vol. 84, no. 10, pp. 893–902, 2009.
[23]  C. M. Digirolamo, D. Stokes, D. Colter, D. G. Phinney, R. Class, and D. J. Prockop, “Propagation and senescence of human marrow stromal cells in culture: a simple colony-forming assay identifies samples with the greatest potential to propagate and differentiate,” British Journal of Haematology, vol. 107, no. 2, pp. 275–281, 1999.
[24]  M. Bikram, C. Fouletier-Dilling, J. A. Hipp et al., “Endochondral bone formation from hydrogel carriers loaded with BMP2-transduced cells,” Annals of Biomedical Engineering, vol. 35, no. 5, pp. 796–807, 2007.
[25]  A. S. Sawhney, C. P. Pathak, and J. A. Hubbell, “Interfacial photopolymerization of poly(ethylene glycol)-based hydrogels upon alginate-poly(l-lysine) microcapsules for enhanced biocompatibility,” Biomaterials, vol. 14, no. 13, pp. 1008–1016, 1993.
[26]  K. B. Bjugstad, D. E. Redmond, K. J. Lampe, D. S. Kern, J. R. Sladek, and M. J. Mahoney, “Biocompatibility of PEG-based hydrogels in primate brain,” Cell Transplantation, vol. 17, no. 4, pp. 409–415, 2008.
[27]  J. T. Wilson and E. L. Chaikof, “Challenges and emerging technologies in the immunoisolation of cells and tissues,” Advanced Drug Delivery Reviews, vol. 60, no. 2, pp. 124–145, 2008.
[28]  X. Y. Liu, J. M. Nothias, A. Scavone, M. Garfinkel, and J. M. Millis, “Biocompatibility investigation of polyethylene glycol and alginate-poly-l-lysine for islet encapsulation,” ASAIO Journal, vol. 56, no. 3, pp. 241–245, 2010.
[29]  N. A. Peppas and W. H. M. Yang, “Properties-based optimization of the structure of polymers for contact lens applications,” Contact and Intraocular Lens Medical Journal, vol. 7, no. 4, pp. 300–314, 1981.
[30]  K. Ghosh, Z. Pan, E. Guan et al., “Cell adaptation to a physiologically relevant ECM mimic with different viscoelastic properties,” Biomaterials, vol. 28, no. 4, pp. 671–679, 2007.
[31]  S. Mallapragada, “Biomaterials for drug delivery and tissue engineering,” in Proceedings of the Materials Research Society Symposium, pp. MM1.4.1–M1.4.6, Materials Research Society, Warrendale, Pa, USA, 2001.
[32]  M. D. Fischer, R. B. Gustilo, and T. F. Varecka, “The timing of flap coverage, bone-grafting, and intramedullary nailing in patients who have a fracture of the tibial shaft with extensive soft-tissue injury,” Journal of Bone and Joint Surgery, vol. 73, no. 9, pp. 1316–1322, 1991.
[33]  C. F. Deroanne, C. M. Lapiere, and B. V. Nusgens, “In vitro tubulogenesis of endothelial cells by relaxation of the coupling extracellular matrix-cytoskeleton,” Cardiovascular Research, vol. 49, no. 3, pp. 647–658, 2001.
[34]  J. Glowacki, “Angiogenesis in fracture repair,” Clinical Orthopaedics and Related Research, no. 355, supplement, pp. S82–S89, 1998.
[35]  S. B. Anderson, C. -C. Lin, D. V. Kuntzler, and K. S. Anseth, “The performance of human mesenchymal stem cells encapsulated in cell-degradable polymer-peptide hydrogels,” Biomaterials, vol. 32, no. 14, pp. 3564–3574, 2011.
[36]  S. Q. Liu, P. L. Rachel Ee, C. Y. Ke, J. L. Hedrick, and Y. Y. Yang, “Biodegradable poly(ethylene glycol)-peptide hydrogels with well-defined structure and properties for cell delivery,” Biomaterials, vol. 30, no. 8, pp. 1453–1461, 2009.
[37]  E. A. Phelps, N. Landázuri, P. M. Thulé, W. R. Taylor, and A. J. García, “Bioartificial matrices for therapeutic vascularization,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 8, pp. 3323–3328, 2010.
[38]  J. Yang, M. T. Jacobsen, H. Pan, and J. Kope?ek, “Synthesis and characterization of enzymatically degradable PEG-based peptide-containing hydrogels,” Macromolecular Bioscience, vol. 10, no. 4, pp. 445–454, 2010.
[39]  A. T. Hillel, S. Unterman, Z. Nahas et al., “Photoactivated composite biomaterial for soft tissue restoration in rodents and in humans,” Science Translational Medicine, vol. 3, no. 93, article 93ra67, 2011.
[40]  R. M. Olabisi, Z. W. Lazard, C. L. Franco et al., “Hydrogel microsphere encapsulation of a cell-based gene therapy system increases cell survival of injected cells, transgene expression, and bone volume in a model of heterotopic ossification,” Tissue Engineering - Part A, vol. 16, no. 12, pp. 3727–3736, 2010.
[41]  M. Haack-S?rensen and J. Kastrup, “Cryopreservation and revival of mesenchymal stromal cells,” Methods in Molecular Biology, vol. 698, pp. 161–174, 2011.
[42]  M. Serra, C. Correia, R. Malpique et al., “Microencapsulation technology: a powerful tool for integrating expansion and cryopreservation of human embryonic stem cells,” PLoS ONE, vol. 6, no. 8, Article ID e23212, 2011.
[43]  R. Malpique, L. M. Osório, D. S. Ferreira et al., “Alginate encapsulation as a novel strategy for the cryopreservation of neurospheres,” Tissue Engineering. Part C: Methods, vol. 16, no. 5, pp. 965–977, 2010.
[44]  F. Q. Mayer, G. Baldo, T. G. De Carvalho, V. L. Lagranha, R. Giugliani, and U. Matte, “Effects of cryopreservation and hypothermic storage on cell viability and enzyme activity in recombinant encapsulated cells overexpressing alpha-l-iduronidase,” Artificial Organs, vol. 34, no. 5, pp. 434–439, 2010.
[45]  T. Kusano, T. Aoki, D. Yasuda et al., “Microencapsule technique protects hepatocytes from cryoinjury,” Hepatology Research, vol. 38, no. 6, pp. 593–600, 2008.
[46]  E. Newman, A. S. Turner, and J. D. Wark, “The potential of sheep for the study of osteopenia: current status and comparison with other animal models,” Bone, vol. 16, no. 4, supplement, 1995.
[47]  D. M. Raab, T. D. Crenshaw, D. B. Kimmel, and E. L. Smith, “A histomorphometric study of cortical bone activity during increased weight-bearing exercise,” Journal of Bone and Mineral Research, vol. 6, no. 7, pp. 741–749, 1991.
[48]  M. Thorwarth, S. Schultze-Mosgau, P. Kessler, J. Wiltfang, and K. A. Schlegel, “Bone regeneration in osseous defects using a resorbable nanoparticular hydroxyapatite,” Journal of Oral and Maxillofacial Surgery, vol. 63, no. 11, pp. 1626–1633, 2005.
[49]  L. Mosekilde, J. Kragstrup, and A. Richards, “Compressive strength, ash weight, and volume of vertebral trabecular bone in experimental fluorosis in pigs,” Calcified Tissue International, vol. 40, no. 6, pp. 318–322, 1987.
[50]  B. M. Willie, R. D. Bloebaum, W. R. Bireley, K. N. Bachus, and A. A. Hofmann, “Determining relevance of a weight-bearing ovine model for bone ingrowth assessment,” Journal of Biomedical Materials Research. Part A, vol. 69, no. 3, pp. 567–576, 2004.
[51]  P. Bosch, S. L. Pratt, and S. L. Stice, “Isolation, characterization, gene modification, and nuclear reprogramming of porcine mesenchymal stem cells,” Biology of Reproduction, vol. 74, no. 1, pp. 46–57, 2006.
[52]  C. L. Franco, J. Price, and J. L. West, “Development and optimization of a dual-photoinitiator, emulsion-based technique for rapid generation of cell-laden hydrogel microspheres,” Acta Biomaterialia, vol. 7, no. 9, pp. 3267–3276, 2011.
[53]  R. P. Lanza, J. L. Hayes, and W. L. Chick, “Encapsulated cell technology,” Nature Biotechnology, vol. 14, no. 9, pp. 1107–1111, 1996.
[54]  R. H. Li, “Materials for immunoisolated cell transplantation,” Advanced Drug Delivery Reviews, vol. 33, no. 1-2, pp. 87–109, 1998.
[55]  C. P. Pathak, A. S. Sawhney, and J. A. Hubbell, “Rapid photopolymerization of immunoprotective gels in contact with cells and tissue,” Journal of the American Chemical Society, vol. 114, no. 21, pp. 8311–8312, 1992.
[56]  V. Dixit, R. Darvasi, M. Arthur, K. Lewin, and G. Gitnick, “Cryopreserved microencapsulated hepatocytes—transplantation studies in Gunn rats,” Transplantation, vol. 55, no. 3, pp. 616–622, 1993.
[57]  B. G. Li, T. C. Hua, H. D. Zhang, Y. F. Wang, and G. X. Wang, “Cryopreservation and xenotransplantation studies of microencapsulated rat pancreatic islets,” Cryo-Letters, vol. 23, no. 1, pp. 47–54, 2002.
[58]  P. B. Stiegler, V. Stadlbauer, S. Schaffellner et al., “Cryopreservation of insulin-producing cells microencapsulated in sodium cellulose sulfate,” Transplantation Proceedings, vol. 38, no. 9, pp. 3026–3030, 2006.
[59]  B. C. Heng, Y. J. H. Yu, and S. C. Ng, “Slow-cooling protocols for microcapsule cryopreservation,” Journal of Microencapsulation, vol. 21, no. 4, pp. 455–467, 2004.
[60]  B. C. Heng, H. Yu, and S. C. Ng, “Strategies for the Cryopreservation of Microencapsulated Cells,” Biotechnology and Bioengineering, vol. 85, no. 2, pp. 202–213, 2004.
[61]  J. M. Rabanel, X. Banquy, H. Zouaoui, M. Mokhtar, and P. Hildgen, “Progress technology in microencapsulation methods for Cell therapy,” Biotechnology Progress, vol. 25, no. 4, pp. 946–963, 2009.
[62]  C. R. Nuttelman, M. C. Tripodi, and K. S. Anseth, “Synthetic hydrogel niches that promote hMSC viability,” Matrix Biology, vol. 24, no. 3, pp. 208–218, 2005.
[63]  C. S. Bahney, T. J. Lujan, C. W. Hsu, M. Bottlang, J. L. West, and B. Johnstone, “Visible light photoinitiation of mesenchymal stem cell-laden bioresponsive hydrogels,” European Cells and Materials, vol. 22, pp. 43–55, 2011.
[64]  D. W. Russell, A. D. Miller, and I. E. Alexander, “Adeno-associated virus vectors preferentially transduce cells in S phase,” Proceedings of the National Academy of Sciences of the United States of America, vol. 91, no. 19, pp. 8915–8919, 1994.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133