全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Surface Modification of Biomaterials: A Quest for Blood Compatibility

DOI: 10.1155/2012/707863

Full-Text   Cite this paper   Add to My Lib

Abstract:

Cardiovascular implants must resist thrombosis and intimal hyperplasia to maintain patency. These implants when in contact with blood face a challenge to oppose the natural coagulation process that becomes activated. Surface protein adsorption and their relevant 3D confirmation greatly determine the degree of blood compatibility. A great deal of research efforts are attributed towards realising such a surface, which comprise of a range of methods on surface modification. Surface modification methods can be broadly categorized as physicochemical modifications and biological modifications. These modifications aim to modulate platelet responses directly through modulation of thrombogenic proteins or by inducing antithrombogenic biomolecules that can be biofunctionalised onto surfaces or through inducing an active endothelium. Nanotechnology is recognising a great role in such surface modification of cardiovascular implants through biofunctionalisation of polymers and peptides in nanocomposites and through nanofabrication of polymers which will pave the way for finding a closer blood match through haemostasis when developing cardiovascular implants with a greater degree of patency. 1. Introduction Cardiovascular disease accounts for a significant percentage of mortality and morbidity in the ageing population and has an estimated increase in the coming years [1]. There is an urgent clinical need for improved cardiovascular devices, which mainly include vascular bypass grafts, vascular stents, and heart valves, which will promote desirable blood-biomaterial interactions with a high patency. Vascular occlusive disease holds the greatest risk factor most emphasised in the coronary arteries where cardiac ischemia may lead to complete heart failure. Main reperfusion-based surgical intervention options for these diseases involve angioplasty, stenting, endarterectomy, and bypass graft surgery depending on the degree of occlusion. Cases with greater than 70% occluded arteries are required to be treated with bypass grafts. For small diameter bypass grafts, autologous bypass conduits are preferred for primary revascularisation [2]. However, 3–30% patients are presented with no autologous vessels due to previous disease conditions and thus there is a need for vascular grafts which could perform closely to autologous vessels [3]. Graft thrombogenicity due to material surface incompatibility and altered flow dynamics at the site of anastomosis or distal outflow are recognised as primary reasons for blood contacting device failure [4]. There is a great interest in

References

[1]  S. Allender and M. Rayner, “Coronary heart disease statistics; British Heart Foundation,” Heart Statistics, 2007, http://www.bhf.org.uk/heart-health/statistics.aspx.
[2]  M. Desai, A. M. Seifalian, and G. Hamilton, “Role of prosthetic conduits in coronary artery bypass grafting,” European Journal of Cardio-Thoracic Surgery, vol. 40, no. 2, pp. 394–398, 2011.
[3]  M. S. Baguneid, A. M. Seifalian, H. J. Salacinski, D. Murray, G. Hamilton, and M. G. Walker, “Tissue engineering of blood vessels,” British Journal of Surgery, vol. 93, no. 3, pp. 282–290, 2006.
[4]  S. Sarkar, K. M. Sales, G. Hamilton, and A. M. Seifalian, “Addressing thrombogenicity in vascular graft construction,” Journal of Biomedical Materials Research, vol. 82, no. 1, pp. 100–108, 2007.
[5]  M. D. Mager, V. Lapointe, and M. M. Stevens, “Exploring and exploiting chemistry at the cell surface,” Nature Chemistry, vol. 3, no. 8, pp. 582–589, 2011.
[6]  M. B. Gorbet and M. V. Sefton, “Biomaterial-associated thrombosis: roles of coagulation factors, complement, platelets and leukocytes,” Biomaterials, vol. 25, no. 26, pp. 5681–5703, 2004.
[7]  B. Tesfamariam, “Platelet function in intravascular device implant-induced intimal injury,” Cardiovascular Revascularization Medicine, vol. 9, no. 2, pp. 78–87, 2008.
[8]  L. Li, C. M. Terry, Y. T. E. Shiu, and A. K. Cheung, “Neointimal hyperplasia associated with synthetic hemodialysis grafts,” Kidney International, vol. 74, no. 10, pp. 1247–1261, 2008.
[9]  V. Mironov, V. Kasyanov, and R. R. Markwald, “Nanotechnology in vascular tissue engineering: from nanoscaffolding towards rapid vessel biofabrication,” Trends in Biotechnology, vol. 26, no. 6, pp. 338–344, 2008.
[10]  J. Hoffmann, J. Groll, J. Heuts et al., “Blood cell and plasma protein repellent properties of star-peg-modified surfaces,” Journal of Biomaterials Science, Polymer Edition, vol. 17, no. 9, pp. 985–996, 2006.
[11]  H. Noh and E. A. Vogler, “Volumetric interpretation of protein adsorption: competition from mixtures and the vroman effect,” Biomaterials, vol. 28, no. 3, pp. 405–422, 2007.
[12]  T. A. Horbett, “Proteins: structure, properties and adsorption to surfaces,” in Biomaterials Science: An Introduction to Materials in Medicine, B. D. Ratner, A. S. Hoffman, F. J. Schoen, and J. E. Lemons, Eds., pp. 133–141, Academia Press, 1996.
[13]  L. Vroman, “Effect of adsorbed proteins on the wettability of hydrophilic and hydrophobic solids,” Nature, vol. 196, no. 4853, pp. 476–477, 1962.
[14]  J. D. Andrade and V. Hlady, “Protein adsorption and materials biocompatibility: a tutorial review and suggested hypoteheses,” Advances in Polymer Science, pp. 1–63, 1987.
[15]  K. L. Menzies and L. Jones, “The impact of contact angle on the biocompatibility of biomaterials,” Optometry and Vision Science, vol. 87, no. 6, pp. 387–399, 2010.
[16]  S. P. Watson, “Platelet activation by extracellular matrix proteins in haemostasis and thrombosis,” Current Pharmaceutical Design, vol. 15, no. 12, pp. 1358–1372, 2009.
[17]  A. Solouk, B. G. Cousins, H. Mirzadeh, M. Solati-Hashtjin, S. Najarian, and A. M. Seifalian, “Surface modification of poss-nanocomposite biomaterials using reactive oxygen plasma treatment for cardiovascular surgical implant applications,” Biotechnology and Applied Biochemistry, vol. 58, no. 3, pp. 147–161, 2011.
[18]  C. M. Nickson, P. J. Doherty, and R. L. Williams, “Novel polymeric coatings with the potential to control in-stent restenosis—an in vitro study,” Journal of Biomaterials Applications, vol. 24, no. 5, pp. 437–452, 2010.
[19]  A. de Mel, G. Punshon, B. Ramesh et al., “In situ endothelialization potential of a biofunctionalised nanocomposite biomaterial-based small diameter bypass graft,” Bio-Medical Materials and Engineering, vol. 19, no. 4-5, pp. 317–331, 2009.
[20]  P. W. K?mmerer, M. Heller, J. Brieger, M. O. Klein, B. Al-Nawas, and M. Gabriel, “Immobilisation of linear and cyclic rgd-peptides on titanium surfaces and their impact on endothelial cell adhesion and proliferation,” European Cells & Materials, vol. 21, pp. 364–372, 2011.
[21]  M. M. Reynolds and G. M. Annich, “The artificial endothelium,” Organogenesis, vol. 7, no. 1, pp. 42–49, 2011.
[22]  K. Kanie, R. Kato, Y. Zhao, Y. Narita, M. Okochi, and H. Honda, “Amino acid sequence preferences to control cell-specific organization of endothelial cells, smooth muscle cells, and fibroblasts,” Journal of Peptide Science, vol. 17, no. 6, pp. 479–486, 2011.
[23]  M. S. Lord, B. Cheng, S. J. McCarthy, M. Jung, and J. M. Whitelock, “The modulation of platelet adhesion and activation by chitosan through plasma and extracellular matrix proteins,” Biomaterials, vol. 32, no. 28, pp. 6655–6662, 2011.
[24]  M. Yaseen, X. Zhao, A. Freund, A. M. Seifalian, and J. R. Lu, “Surface structural conformations of fibrinogen polypeptides for improved biocompatibility,” Biomaterials, vol. 31, no. 14, pp. 3781–3792, 2010.
[25]  M. Ahmed, H. Ghanbari, B. G. Cousins, G. Hamilton, and A. M. Seifalian, “Small calibre polyhedral oligomeric silsesquioxane nanocomposite cardiovascular grafts: influence of porosity on the structure, haemocompatibility and mechanical properties,” Acta Biomaterialia, vol. 7, no. 11, pp. 3857–3867, 2011.
[26]  A. de Mel, G. Jell, M. M. Stevens, and A. M. Seifalian, “Biofunctionalization of biomaterials for accelerated in situ endothelialization: a review,” Biomacromolecules, vol. 9, no. 11, pp. 2969–2979, 2008.
[27]  R. Y. Kanna, H. J. Salacinski, J. De Groot et al., “The antithrombogenic potential of a polyhedral oligomeric silsesquioxane (POSS) nanocomposite,” Biomacromolecules, vol. 7, no. 1, pp. 215–223, 2006.
[28]  R. Y. Kannan, H. J. Salacinski, M. Odlyha, P. E. Butler, and A. M. Seifalian, “The degradative resistance of polyhedral oligomeric silsesquioxane nanocore integrated polyurethanes: an in vitro study,” Biomaterials, vol. 27, no. 9, pp. 1971–1979, 2006.
[29]  H. Ghanbari, A. de Mel, and A. M. Seifalian, “Cardiovascular application of polyhedral oligomeric silsesquioxane nanomaterials: a glimpse into prospective horizons,” International Journal of Nanomedicine, vol. 6, pp. 775–786, 2011.
[30]  A. Wilson, P. E. Butler, and A. M. Seifalian, “Adipose-derived stem cells for clinical applications: a review,” Cell Proliferation, vol. 44, no. 1, pp. 86–98, 2011.
[31]  K. Saha, J. F. Pollock, D. V. Schaffer, and K. E. Healy, “Designing synthetic materials to control stem cell phenotype,” Current Opinion in Chemical Biology, vol. 11, no. 4, pp. 381–387, 2007.
[32]  N. S. Hwang, S. Varghese, and J. Elisseeff, “Controlled differentiation of stem cells,” Advanced Drug Delivery Reviews, vol. 60, no. 2, pp. 199–214, 2008.
[33]  E. Dawson, G. Mapili, K. Erickson, S. Taqvi, and K. Roy, “Biomaterials for stem cell differentiation,” Advanced Drug Delivery Reviews, vol. 60, no. 2, pp. 215–228, 2008.
[34]  C. Chai and K. W. Leong, “Biomaterials approach to expand and direct differentiation of stem cells,” Molecular Therapy, vol. 15, no. 3, pp. 467–480, 2007.
[35]  N. Alobaid, H. J. Salacinski, K. M. Sales et al., “Nanocomposite containing bioactive peptides promote endothelialisation by circulating progenitor cells: an in vitro evaluation,” European Journal of Vascular and Endovascular Surgery, vol. 32, no. 1, pp. 76–83, 2006.
[36]  D. C. Miller, T. J. Webster, and K. M. Haberstroh, “Technological advances in nanoscale biomaterials: the future of synthetic vascular graft design,” Expert Review of Medical Devices, vol. 1, no. 2, pp. 259–268, 2004.
[37]  D. C. Miller, K. M. Haberstroh, and T. J. Webster, “Mechanism(s) of increased vascular cell adhesion on nanostructured poly(lactic-co-glycolic acid) films,” Journal of Biomedical Materials Research, vol. 73, no. 4, pp. 476–484, 2005.
[38]  D. C. Miller, K. M. Haberstroh, and T. J. Webster, “PLGA nanometer surface features manipulate fibronectin interactions for improved vascular cell adhesion,” Journal of Biomedical Materials Research, vol. 81, no. 3, pp. 678–684, 2007.
[39]  R. J. McMurray, N. Gadegaard, P. M. Tsimbouri et al., “Nanoscale surfaces for the long-term maintenance of mesenchymal stem cell phenotype and multipotency,” Nature Materials, vol. 10, no. 8, pp. 637–644, 2011.
[40]  L. E. McNamara, R. J. McMurray, M. J. Biggs, F. Kantawong, R. O. Oreffo, and M. J. Dalby, “Nanotopographical control of stem cell differentiation,” Journal of Tissue Engineering, vol. 2010, article 120623, 2010.
[41]  A. de Mel, C. Bolvin, M. Edirisinghe, G. Hamilton, and A. M. Seifalian, “Development of cardiovascular bypass grafts: endothelialization and applications of nanotechnology,” Expert Review of Cardiovascular Therapy, vol. 6, no. 9, pp. 1259–1277, 2008.
[42]  M. Loizidou and A. M. Seifalian, “Nanotechnology and its applications in surgery,” British Journal of Surgery, vol. 97, no. 4, pp. 463–465, 2010.
[43]  Q. P. Pham, U. Sharma, and A. G. Mikos, “Electrospinning of polymeric nanofibers for tissue engineering applications: a review,” Tissue Engineering, vol. 12, no. 5, pp. 1197–1211, 2006.
[44]  R. Murugan and S. Ramakrishna, “Nano-featured scaffolds for tissue engineering: a review of spinning methodologies,” Tissue Engineering, vol. 12, no. 3, pp. 435–447, 2006.
[45]  J. J. Norman and T. A. Desai, “Methods for fabrication of nanoscale topography for tissue engineering scaffolds,” Annals of Biomedical Engineering, vol. 34, no. 1, pp. 89–101, 2006.
[46]  H. Perea, J. Aigner, J. T. Heverhagen, U. Hopfner, and E. Wintermantel, “Vascular tissue engineering with magnetic nanoparticles: seeing deeper,” Journal of Tissue Engineering and Regenerative Medicine, vol. 1, no. 4, pp. 318–321, 2007.
[47]  A. De Mel, F. Murad, and A. M. Seifalian, “Nitric oxide: a guardian for vascular grafts?” Chemical Reviews, vol. 111, no. 9, pp. 5742–5767, 2011.
[48]  A. G. Kidane, H. Salacinski, A. Tiwari, K. R. Bruckdorfer, and A. M. Seifalian, “Anticoagulant and antiplatelet agents: their clinical and device application(s) together with usages to engineer surfaces,” Biomacromolecules, vol. 5, no. 3, pp. 798–813, 2004.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133