全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

BSA Nanoparticles for siRNA Delivery: Coating Effects on Nanoparticle Properties, Plasma Protein Adsorption, and In Vitro siRNA Delivery

DOI: 10.1155/2012/584060

Full-Text   Cite this paper   Add to My Lib

Abstract:

Developing vehicles for the delivery of therapeutic molecules, like siRNA, is an area of active research. Nanoparticles composed of bovine serum albumin, stabilized via the adsorption of poly-L-lysine (PLL), have been shown to be potentially inert drug-delivery vehicles. With the primary goal of reducing nonspecific protein adsorption, the effect of using comb-type structures of poly(ethylene glycol) (1?kDa, PEG) units conjugated to PLL (4.2 and 24?kDa) on BSA-NP properties, apparent siRNA release rate, cell viability, and cell uptake were evaluated. PEGylated PLL coatings resulted in NPs with -potentials close to neutral. Incubation with platelet-poor plasma showed the composition of the adsorbed proteome was similar for all systems. siRNA was effectively encapsulated and released in a sustained manner from all NPs. With 4.2?kDa PLL, cellular uptake was not affected by the presence of PEG, but PEG coating inhibited uptake with 24?kDa PLL NPs. Moreover, 24?kDa PLL systems were cytotoxic and this cytotoxicity was diminished upon PEG incorporation. The overall results identified a BSA-NP coating structure that provided effective siRNA encapsulation while reducing -potential, protein adsorption, and cytotoxicity, necessary attributes for in vivo application of drug-delivery vehicles. 1. Introduction Short interfering RNA (siRNA) is extremely promising for the therapeutic treatment of a myriad of diseases; however, its clinical application has hitherto been hindered by an apparent inability to control its delivery. The use of NP based drug delivery vehicles presents several advantages over conventional delivery stratagems, including the fact that they may be used for precise tissue targeting, remain in blood for a prolonged time, and be immediately injected into the systemic circulation. Furthermore, favorable tissue responses have been observed for decreasing particle sizes [1] and a multitude of covalent and noncovalent modifications of NP surfaces can be achieved, aspects that facilitate the design of more effective carriers. In particular, BSA-based NPs have many advantageous qualities [2]: presence of a hydrophobic core facilitating delivery of hydrophobic drugs, a natural abundance in plasma, relative stability and inertness in biochemical pathways, availability, and a relatively benign in vivo biological fate [3]. Unlike NPs fabricated from synthetic polymers, it is thought that the natural protein removal mechanisms will result in a reduced overall toxicity related to the application of BSA NPs [3]. That said, an important step in facilitating the

References

[1]  H. Harashima, K. Sakata, K. Funato, and H. Kiwada, “Enhanced hepatic uptake of liposomes through complement activation depending on the size of liposomes,” Pharmaceutical Research, vol. 11, no. 3, pp. 402–406, 1994.
[2]  C. Weber, J. Kreuter, and K. Langer, “Desolvation process and surface characteristics of HSA-nanoparticles,” International Journal of Pharmaceutics, vol. 196, no. 2, pp. 197–200, 2000.
[3]  G. Wang and H. Uludag, “Recent developments in nanoparticle-based drug delivery and targeting systems with emphasis on protein-based nanoparticles,” Expert Opinion on Drug Delivery, vol. 5, no. 5, pp. 499–515, 2008.
[4]  L. D. Unsworth, H. Sheardown, and J. L. Brash, “Protein-resistant polyethylene oxide-grafted surfaces: chain density-dependent multiple mechanisms of action,” Langmuir, vol. 24, no. 5, pp. 1924–1929, 2008.
[5]  K. S. Soppimath, T. M. Aminabhavi, A. R. Kulkarni, and W. E. Rudzinski, “Biodegradable polymeric nanoparticles as drug delivery devices,” Journal of Controlled Release, vol. 70, no. 1-2, pp. 1–20, 2001.
[6]  J. Milton Harris and R. B. Chess, “Effect of pegylation on pharmaceuticals,” Nature Reviews Drug Discovery, vol. 2, no. 3, pp. 214–221, 2003.
[7]  D. E. Owens and N. A. Peppas, “Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles,” International Journal of Pharmaceutics, vol. 307, no. 1, pp. 93–102, 2006.
[8]  P. Kingshott, H. Thissen, and H. J. Griesser, “Effects of cloud-point grafting, chain length, and density of PEG layers on competitive adsorption of ocular proteins,” Biomaterials, vol. 23, no. 9, pp. 2043–2056, 2002.
[9]  L. D. Unsworth, H. Sheardown, and J. L. Brash, “Polyethylene oxide surfaces of variable chain density by chemisorption of PEO-thiol on gold: adsorption of proteins from plasma studied by radiolabelling and immunoblotting,” Biomaterials, vol. 26, no. 30, pp. 5927–5933, 2005.
[10]  L. D. Unsworth, H. Sheardown, and J. L. Brash, “Protein resistance of surfaces prepared by sorption of end-thiolated poly(ethylene glycol) to gold: effect of surface chain density,” Langmuir, vol. 21, no. 3, pp. 1036–1041, 2005.
[11]  M. Bonomini, B. Pavone, V. Sirolli et al., “Proteomics characterization of protein adsorption onto hemodialysis membranes,” Journal of Proteome Research, vol. 5, no. 10, pp. 2666–2674, 2006.
[12]  G. Wang, C. Kucharski, X. Y. Lin, and H. Uluda?, “Bisphosphonate-coated BSA nanoparticles lack bone targeting after systemic administration,” Journal of Drug Targeting, vol. 18, no. 8, pp. 611–626, 2010.
[13]  H. D. Singh, G. Wang, H. Uluda?, and L. D. Unsworth, “Poly-L-lysine-coated albumin nanoparticles: stability, mechanism for increasing in vitro enzymatic resilience, and siRNA release characteristics,” Acta Biomaterialia, vol. 6, no. 11, pp. 4277–4284, 2010.
[14]  H. D. Singh, I. Bushnak, and L. D. Unsworth, “Engineered peptides with enzymatically cleavable domains for controlling the release of model protein drug from “soft” nanoparticles,” Acta Biomaterialia, vol. 8, no. 2, pp. 636–645, 2012.
[15]  S. Zhang, J. E. Wright, N. Ozber, and H. Uluda?, “The interaction of cationic polymers and their bisphosphonate derivatives with hydroxyapatite,” Macromolecular Bioscience, vol. 7, no. 5, pp. 656–670, 2007.
[16]  H. M. Aliabadi, B. Landry, P. Mahdipoor, and H. Uluda?, “Induction of apoptosis by survivin silencing through siRNA delivery in a human breast cancer cell line,” Molecular Pharmaceutics, vol. 8, no. 5, pp. 1821–1830, 2011.
[17]  N. Cao, D. Cheng, S. Zou, H. Ai, J. Gao, and X. Shuai, “The synergistic effect of hierarchical assemblies of siRNA and chemotherapeutic drugs co-delivered into hepatic cancer cells,” Biomaterials, vol. 32, no. 8, pp. 2222–2232, 2011.
[18]  A. J. Convertine, D. S. W. Benoit, C. L. Duvall, A. S. Hoffman, and P. S. Stayton, “Development of a novel endosomolytic diblock copolymer for siRNA delivery,” Journal of Controlled Release, vol. 133, no. 3, pp. 221–229, 2009.
[19]  T. M. Massa, M. L. Yang, J. Y. C. Ho, J. L. Brash, and J. P. Santerre, “Fibrinogen surface distribution correlates to platelet adhesion pattern on fluorinated surface-modified polyetherurethane,” Biomaterials, vol. 26, no. 35, pp. 7367–7376, 2005.
[20]  L. Tang and J. W. Eaton, “Natural responses to unnatural materials: a molecular mechanism for foreign body reactions,” Molecular Medicine, vol. 5, no. 6, pp. 351–358, 1999.
[21]  G. A. Skarja, R. L. Kinlough-Rathbone, D. W. Perry, F. Rubens, and J. L. Brash, “A cone-and-plate device for the investigation of platelet biomaterial interactions,” Journal of Biomedical Materials Research, vol. 34, no. 4, pp. 427–438, 1997.
[22]  S. Thakurta and A. Subramanian, “Evaluation of in situ albumin binding surfaces: a study of protein adsorption and platelet adhesion,” Journal of Materials Science: Materials in Medicine, vol. 22, no. 1, pp. 137–149, 2011.
[23]  L. Tang, L. Liu, and H. B. Elwing, “Complement activation and inflammation triggered by model biomaterial surfaces,” Journal of Biomedical Materials Research, vol. 41, no. 2, pp. 333–340, 1998.
[24]  H. Molina, “Complement and immunity,” Rheumatic Disease Clinics of North America, vol. 30, no. 1, pp. 1–18, 2004.
[25]  J. L. Brash, “Exploiting the current paradigm of blood-material interactions for the rational design of blood-compatible materials,” Journal of Biomaterials Science, Polymer Edition, vol. 11, no. 11, pp. 1135–1146, 2000.
[26]  S. Asakura, R. W. Hurley, K. Skorstengaard, I. Ohkubo, and D. F. Mosher, “Inhibition of cell adhesion by high molecular weight kininogen,” Journal of Cell Biology, vol. 116, no. 2, pp. 465–476, 1992.
[27]  R. G. Flemming, R. A. Proctor, and S. L. Cooper, “Bacterial adhesion to functionalized polyurethanes,” Journal of Biomaterials Science, Polymer Edition, vol. 10, no. 6, pp. 679–697, 1999.
[28]  E. W. Davie and J. D. Kulman, “An overview of the structure and function of thrombin,” Seminars in Thrombosis and Hemostasis, vol. 32, no. 1, pp. 3–15, 2006.
[29]  P. G. W. Gettins, “Serpin structure, mechanism, and function,” Chemical Reviews, vol. 102, no. 12, pp. 4751–4803, 2002.
[30]  Y. Patil and J. Panyam, “Polymeric nanoparticles for siRNA delivery and gene silencing,” International Journal of Pharmaceutics, vol. 367, no. 1-2, pp. 195–203, 2009.
[31]  J. Du, Y. Sun, Q. S. Shi, et al., “Biodegradable nanoparticles of mPEG-PLGA-PLL Triblock Copolymers as Novel Non-Viral Vectors for Improving siRNA Delivery and Gene Silencing,” International Journal of Molecular Sciences, vol. 13, no. 1, pp. 516–533, 2012.
[32]  T. Lobovkina, G. B. Jacobson, E. Gonzalez-Gonzalez, et al., “In vivo sustained release of siRNA from solid lipid nanoparticles,” ACS Nano, vol. 5, no. 12, pp. 9977–9983, 2011.
[33]  J. Zhou, T. R. Patel, M. Fu, J. P. Bertram, and W. M. Saltzman, “Octa-functional PLGA nanoparticles for targeted and efficient siRNA delivery to tumors,” Biomaterials, vol. 33, no. 2, pp. 583–591, 2011.
[34]  M. Abbasi, H. Uluda?, V. Incani, C. Y. M. Hsu, and A. Jeffery, “Further investigation of lipid-substituted poly(L-lysine) polymers for transfection of human skin fibroblasts,” Biomacromolecules, vol. 9, no. 6, pp. 1618–1630, 2008.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133