Porous Hydroxyapatite and Aluminium-Oxide Ceramic Orbital Implant Evaluation Using CBCT Scanning: A Method for In Vivo Porous Structure Evaluation and Monitoring
Objective. This study aimed to define CBCT as a technique for postimplantation in vivo examination of porous hydroxyapatite and aluminium-oxide orbital implant shape, volume and density changes. Methods and Materials. CBCT was used to evaluate 30 enucleated patients treated with spherical polyglactin 910 wrapped hydroxyapatite and aluminum-oxide orbital implants. The mean duration of patient followup was 3.2 years or 1338 days with a range of 0.2 to 7.2 years or 79 to 2636 days in a population with an average age of 40.8 years. Results. The resolution of currently clinically used CBCT equipment allowed detailed structural observation of the orbital hydroxyapatite implants with some modifications. Volume and shape estimations were possible while density evaluation was more complicated compared to medical source computed tomography. The mean densities of the orbital implants were followed and a consistent gradual decrease identified from the beginning of implantation which was better defined after the applied correction procedure. Conclusion. CBCT with lower dosages of radiation exposure can be used to follow changes in implanted high-density porous structures. The density evaluation is possible with calibration modifications. Changes in orbital implant densities identified in this study may correspond to healing and maturation of soft tissues surrounding and penetrating the implants. 1. Introduction Enucleation has long been used for the treatment of ocular diseases such as intraocular malignancy, severe trauma, and blind painful eye. The major purpose of enucleation is to remove the diseased globe intact and to provide a cosmetically acceptable appearance [1]. The first orbital removal for medical treatment was performed in 1583. In 1885 the first orbital implants to replace the obvious cosmetically deleterious volume loss after evisceration were hollow glass, gold, or silver spheres [1–3]. Since then numerous studies describing different types of enucleation techniques and various types of orbital implants have been published [4–10]. These implanted spheres are permanently buried within the soft tissues of the orbit. Later a cosmetically pleasing, removable shield-like ocular prosthesis made from glass or medical grade acrylic is placed between the remaining conjunctiva and eyelids and supported by the sphere-shaped orbital implant. The characteristics of an ideal orbital implant include adequate volume replacement of the lost globe, good motility and support transmitted to the overlying ocular prosthesis, low rate of complications, and with an
References
[1]
C. L. Shields, J. A. Shields, and P. de Potter, “Hydroxyapatite orbital implant after enucleation: experience with initial 100 consecutive cases,” Archives of Ophthalmology, vol. 110, no. 3, pp. 333–339, 1992.
[2]
N. J. Christmas, C. D. Gordon, T. G. Murray et al., “Intraorbital implants after enucleation and their complications: a 10- year review,” Archives of Ophthalmology, vol. 116, no. 9, pp. 1199–1203, 1998.
[3]
R. Chalasani, L. Poole-Warren, R. M. Conway, and B. Ben-Nissan, “Porous orbital implants in enucleation: a systematic review,” Survey of Ophthalmology, vol. 52, no. 2, pp. 145–155, 2007.
[4]
D. Sami, S. Young, and R. Petersen, “Perspective on orbital enucleation implants,” Survey of Ophthalmology, vol. 52, no. 3, pp. 244–265, 2007.
[5]
J. A. Shields, C. L. Shields, and P. de Potter, “Hydroxyapatite orbital implant after enucleation. Experience with 200 cases,” Mayo Clinic Proceedings, vol. 68, no. 12, pp. 1191–1195, 1993.
[6]
D. R. Jordan, S. Gilberg, and A. Bawazeer, “Coralline hydroxyapatite orbital implant (Bio-Eye): experience with 158 patients,” Ophthalmic Plastic and Reconstructive Surgery, vol. 20, no. 1, pp. 69–74, 2004.
[7]
A. J. Suter, A. C. Molteno, T. H. Bevin, J. D. Fulton, and P. Herbison, “Long term follow up of bone derived hydroxyapatite orbital implants,” British Journal of Ophthalmology, vol. 86, no. 11, pp. 1287–1292, 2002.
[8]
S. M. Blaydon, T. R. Shepler, R. W. Neuhaus, W. L. White, and J. W. Shore, “The porous polyethylene (Medpor) spherical orbital implant: a retrospective study of 136 cases,” Ophthalmic Plastic and Reconstructive Surgery, vol. 19, no. 5, pp. 364–371, 2003.
[9]
D. R. Jordan, S. Gilberg, and L. A. Mawn, “The bioceramic orbital implant: experience with 107 implants,” Ophthalmic Plastic and Reconstructive Surgery, vol. 19, no. 2, pp. 128–135, 2003.
[10]
N. Trichopoulos and J. J. Augsburger, “Enucleation with unwrapped porous and nonporous orbital implants: a 15-year experience,” Ophthalmic Plastic and Reconstructive Surgery, vol. 21, no. 5, pp. 331–336, 2005.
[11]
K. A. Hing, S. M. Best, K. E. Tanner, W. Bonfield, and P. A. Revell, “Mediation of bone ingrowth in porous hydroxyapatite bone graft substitutes,” Journal of Biomedical Materials Research A, vol. 68, no. 1, pp. 187–200, 2004.
[12]
P. A. D. Rubin, J. K. Popham, J. R. Bilyk, and J. W. Shore, “Comparison of fibrovascular ingrowth into hydroxyapatite and porous polyethylene orbital implants,” Ophthalmic Plastic and Reconstructive Surgery, vol. 10, no. 2, pp. 96–103, 1994.
[13]
J. W. Karesh, S. C. Dresner, and J. J. Dutton, “High-density porous polyethylene (Medpor) as a successful anophthalmic socket implant,” Ophthalmology, vol. 101, no. 10, pp. 1688–1696, 1994.
[14]
S. R. Klapper, D. R. Jordan, A. Ells, and S. Grahovac, “Hydroxyapatite orbital implant vascularisation assessed by magnetic resonance imaging,” Ophthalmic Plastic and Reconstructive Surgery, vol. 19, no. 1, pp. 46–52, 2003.
[15]
J. P. Spirnak, N. Nieves, D. A. Hollsten, W. C. White, and T. A. Betz, “Gadolinium-enhanced magnetic resonance imaging assessment of hydroxyapatite orbital implants,” American Journal of Ophthalmology, vol. 119, no. 4, pp. 431–440, 1995.
[16]
S. W. Park, H. Y. Seol, S. J. Hong, K. A. Kim, J. C. Choi, and I. H. Cha, “Magnetic resonance evaluation of fibrovascular ingrowth into porous polyethylene orbital implant,” Clinical Imaging, vol. 27, no. 6, pp. 377–381, 2003.
[17]
D. R. Jordan, S. R. Klapper, and S. M. Gilberg, “The use of Vicryl mesh in 200 porous orbital implants: a technique with few exposures,” Ophthalmic Plastic and Reconstructive Surgery, vol. 19, no. 1, pp. 53–61, 2003.
[18]
D. R. Jordan and S. R. Klapper, “Wrapping hydroxyapatite implants,” Ophthalmic Surgery and Lasers, vol. 30, no. 5, pp. 403–407, 1999.
[19]
C. W. Stuart and J. P. Michael, Principles and Interpretation. Oral Radiology, Mosby, St. Louis, Mo, USA, 6th edition, 2009.
[20]
A. Yamashina, K. Tanimoto, P. Sutthiprapaporn, and Y. Hayakawa, “The reliability of computed tomography (CT) values and dimensional measurements of the oropharyngeal region using cone beam CT: comparison with multidetector CT,” Dentomaxillofacial Radiology, vol. 37, no. 5, pp. 245–251, 2008.
[21]
D. Schulze, M. Blessmann, P. Pohlenz, K. W. Wagner, and M. Heiland, “Diagnostic criteria for the detection of mandibular osteomyelitis using cone-beam computed tomography,” Dentomaxillofacial Radiology, vol. 35, no. 4, pp. 232–235, 2006.
[22]
W. de Vos, J. Casselman, and G. R. J. Swennen, “Cone-beam computerized tomography (CBCT) imaging of the oral and maxillofacial region: a systematic review of the literature,” International Journal of Oral and Maxillofacial Surgery, vol. 38, no. 6, pp. 609–625, 2009.
[23]
M. O. Lagravère, J. Carey, M. Ben-Zvi, G. V. Packota, and P. W. Major, “Effect of object location on the density measurement and Hounsfield conversion in a NewTom 3G cone beam computed tomography unit,” Dentomaxillofacial Radiology, vol. 37, no. 6, pp. 305–308, 2008.
[24]
G. R. Swennen and F. Schutyser, “Three-dimensional cephalometry: spiral multi-slice vs cone-beam computed tomography,” American Journal of Orthodontics and Dentofacial Orthopedics, vol. 130, no. 3, pp. 410–416, 2006.
[25]
J. A. Bryant, N. A. Drage, and S. Richmond, “Study of the scan uniformity from an i-CAT cone beam computed tomography dental imaging system,” Dentomaxillofacial Radiology, vol. 37, no. 7, pp. 365–374, 2008.
[26]
A. Katsumata, A. Hirukawa, S. Okumura et al., “Effects of image artifacts on gray-value density in limited-volume cone-beam computerized tomography,” Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology and Endodontology, vol. 104, no. 6, pp. 829–836, 2007.
[27]
K. Araki, K. Maki, K. Seki et al., “Characteristics of a newly developed dentomaxillofacial X-ray cone beam CT scanner (CB MercuRay): system configuration and physical properties,” Dentomaxillofacial Radiology, vol. 33, no. 1, pp. 51–59, 2004.
[28]
W. A. Kalender, 2., überarbeitete und Erweiterte Auflage. Computertomographie, Publicis Corporate, Erlangen, Germany, 2006.
[29]
M. O. Lagravère, Y. Fang, J. Carey, R. W. Toogood, G. V. Packota, and P. W. Major, “Density conversion factor determined using a cone-beam computed tomography unit NewTom QR-DVT 9000,” Dentomaxillofacial Radiology, vol. 35, no. 6, pp. 407–409, 2006.
[30]
C. L. Shields, J. A. Shields, P. de Potter, and A. D. Singh, “Problems with the hydroxyapatite orbital implant: experience with 250 consecutive cases,” British Journal of Ophthalmology, vol. 78, no. 9, pp. 702–706, 1994.
[31]
A. C. Perry, “Advances in enucleation,” Ophthalmology Clinics of North America, vol. 4, pp. 173–182, 1991.
[32]
C. L. Shields, J. A. Shields, R. C. Eagle, and P. de Potter, “Histopathologic evidence of fibrovascular ingrowth four weeks after placement of the hydroxyapatite orbital implant,” American Journal of Ophthalmology, vol. 111, no. 3, pp. 363–366, 1991.
[33]
L. A. Mawn, D. R. Jordan, and S. Gilberg, “Scanning electron microscopic examination of porous orbital implants,” Canadian Journal of Ophthalmology, vol. 33, no. 4, pp. 203–209, 1998.
[34]
L. A. Mawn, D. R. Jordan, and S. Gilberg, “Proliferation of human fibroblasts in vitro after exposure to orbital implants,” Canadian Journal of Ophthalmology, vol. 36, no. 5, pp. 245–251, 2001.
[35]
P. S. Christel, “Biocompatibility of surgical-grade dense polycrystalline alumina,” Clinical Orthopaedics and Related Research, no. 282, pp. 10–18, 1992.
[36]
H. Y. Choi, J. S. Lee, H. J. Park, B. S. Oum, H. J. Kim, and D. Y. Park, “Magnetic resonance imaging assessment of fibrovascular ingrowth into porous polyethylene orbital implants,” Clinical and Experimental Ophthalmology, vol. 34, no. 4, pp. 354–359, 2006.
[37]
P. de Potter, T. Duprez, and G. Cosnard, “Postcontrast magnetic resonance imaging assessment of porous polyethylene orbital implant (Medpor),” Ophthalmology, vol. 107, no. 9, pp. 1656–1660, 2000.
[38]
A. C. Civelek, E. M. Pacheco, T. K. Natarajan, H. N. Wagner, and N. T. Iliff, “Quantitative measurement of vascularization and vascular ingrowth rate of coralline hydroxyapatite ocular implant by Tc-99m MDP bone imaging,” Clinical Nuclear Medicine, vol. 20, no. 9, pp. 779–787, 1995.
[39]
E. M. Pacheco, A. C. Civelek, T. K. Natarajan, S. A. D'Anna, N. T. Iliff, and W. R. Green, “Clinicopathological correlation of technetium bone scan in vascularization of hydroxyapatite implants: a primate model,” Archives of Ophthalmology, vol. 115, no. 9, pp. 1173–1177, 1997.
[40]
H. Zhang, G. Li, C. Ji et al., “Effects of vascular endothelial cell growth factor on fibrovascular ingrowth into Rabbit's hydroxyapatite orbital implant,” Journal of Huazhong University of Science and Technology—Medical Science, vol. 24, no. 3, pp. 286–288, 2004.
[41]
M. H. Pan, Y. W. Wu, R. F. Yen, K. Y. Tzen, S. L. Liao, and C. H. Kao, “Different fibrovascularization rate between coralline hydroxyapatite and high density porous polyethylene (Medpore) measured by 99?mTc-MDP bone scintigraphy 6 months after intraorbital implantation,” Nuclear Medicine Communications, vol. 24, no. 12, pp. 1237–1241, 2003.
[42]
L. Bordenave, “Nuclear medicine serving prostheses and biomaterials,” ITBM-RBM, vol. 26, no. 3, pp. 206–211, 2005.
[43]
B. Feng, Z. Jinkang, W. Zhen et al., “The effect of pore size on tissue ingrowth and neovascularization in porous bioceramics of controlled architecture in vivo,” Biomedical Materials, vol. 6, no. 1, p. 015007, 2011.
[44]
M. Beaumont, M. G. DuVal, Y. Loai, W. A. Farhat, G. K. Sandor, and H. L. M. Cheng, “Monitoring angiogenesis in soft-tissue engineered constructs for calvarium bone regeneration: an in vivo longitudinal DCE-MRI study,” NMR in Biomedicine, vol. 23, no. 1, pp. 48–55, 2010.