|
- 2018
Vibrational, Ultra Violet, Natural Bond Orbital Analysis of E-1 Using Quantum Mechanical Computations and Experimental Spectra. - Vibrational, Ultra Violet, Natural Bond Orbital Analysis of E-1 Using Quantum Mechanical Computations and Experimental Spectra. - Open Access PubAbstract: The FT-IR, FT-Raman and UV-Vis spectra of E-[1-(3'-methylthienyl)-5-Phenyl-2,4-Pentadiene-3-one (MPPO) were recorded. The optimized molecular bond parameters, harmonic frequencies were calculated using B3LYP method with 6-311++G (d,p) basis set.The various normal modes were precisely assigned with thehelp ofTED calculation. The theoretical spectrograms for FT-IR, FT-Raman and Ultra Violet visible. Spectra of the title molecule had been constructed. The ICT was calculated by means of Natural Bond Orbital analysis. The Non Linear Optical properties related to polarizability and hyperpolarizability based on the finite-field approach were calculated.The band gap energy was calculated using HOMO-LUMO analysis. Furthermore, the Molecular Electrostatic Potential, Mulliken atomic charges and thermodynamic properties of MPPO were also calculated. DOI10.14302/issn.2377-2549.jndc-16-1119 Chalcones belong to the flavonoid families which are synthesized in factories to preserve the health of plants against infections and parasites. They have attractedincreasing attention due to numerous pharmacological applications 1, 2, 3, 4, 5, 6, 7, 8.It possess various multipronged activities such as anti-microbial 9, anti-depressants 10, anti-plasmodial 11, anti-aids 12, insect anti-feedant activities 13, 14, biological treatment due to its good anti-malaria 15, and in vitro anti-tumor activity 16. It exhibits radical quenching and hydroxyl adducts formation 17. Whilst chalcones are active against various protein targets, modification of the privileged core could lead to novel compounds with specifically targeted inhibitory activity 18. Chidan Kumar et al., 19 synthesized the high quality single crystal of efficient novel NLO chalcone derivative (2E)-1-(5-chlorothiophen-2-yl)-3-(2,3,4-trimethoxyphenyl) prop-2-en-1-one and its structure was characterized by FTIR, FT-Raman and single crystal XRD techniques. The vibrational wavenumbers were computed using DFT and were assigned on the basis of PED analysis. The geometrical parameters obtained from XRD studywere compared with the calculated values by applying DFT/6-31G (d,p) basis set. Stability of the molecule, hyper conjugative interactions, charge delocalization and intra-molecular hydrogen bond had been studied using NBO analysis. Karunakaran et al., 20 reported the FTIR and FT-Raman spectra of trans-3-(o-hydroxyphenyl-1-phenyl)-2-propen-1-one (or simply 2-hydroxychalcone) were recorded in the regions 4000–400 cm-1 and 3500–100 cm-1, respectively in the solid phase. The vibrational wavenumbers were calculated by HF and DFT/B3LYP
|