全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

Spatial Heterogeneity of Soil Respiration Response To Precipitation Pulse in A Temperate Mixed Forest in Central China - Spatial Heterogeneity of Soil Respiration Response To Precipitation Pulse in A Temperate Mixed Forest in Central China - Open Access Pub

Full-Text   Cite this paper   Add to My Lib

Abstract:

Water availability is one of the fundamental drivers for biological activities and terrestrial carbon cycling. Although the response of soil respiration to precipitation has been well documented in arid and semiarid ecosystems, our understanding of its pattern in forests is rather limited. This study was conducted to examine the difference of precipitation effect on soil respiration under different canopy conditions in a temperate coniferous (Pinus armandii Franch) and broadleaved (Quercus aliena var. acuteserrata) mixed forest in Central China. The results showed that precipitation significantly reduced soil temperature, but increased soil volumetric water content and soil respiration (6.0%-35.3%). Precipitation caused a greater increment in soil respiration beneath the canopy of broadleaved trees (24.2%) than that beneath coniferous ones (13.5%). Precipitation-induced increase in soil respiration was consistently lower beneath the canopy of small size classes (7.1%-32.6%) than large size classes (9.5%-33.3%). Mean soil respiration of forest gaps increased 22.4% following precipitations. Our study highlights the positive response of soil respiration to precipitation pulses in water-unlimited ecosystems. The findings suggest that the spatial heterogeneity of soil respiration to precipitation pulse under different canopy conditions should be emphasized while assessing terrestrial carbon cycling and its feedback to climate change. DOI10.14302/issn.2637-6075.jpae-17-1863 Soil respiration, the primary process by which CO2 assimilated by plants returns to the atmosphere 1, is one of the major components of the terrestrial ecosystem carbon (C) cycle 2. Previous researches have shown that this process is influenced by environmental factors 3, 4. Soil temperature and moisture conditions are generally identified as two major factors that are closely related to soil respiration 5, 6. A rapid pulse of CO2 efflux following precipitation has been observed in many ecosystems 1, resulting from rapid microbial growth and mineralization of accessible soil organic content including dead microbial biomass 7. While the presence of CO2 efflux is consistent for the studied ecosystems, the response magnitudes of respiration vary among ecosystems due to different vegetation characteristics, soil structure, and nutrient conditions. In the forest-grassland transition zone of the Loess Plateau, precipitation results in 1.6 times increase in soil respiration for oak forests 5. However, CO2 efflux increased up to 30 times after experimental rewetting in Sonoran desert ecosystem 1.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133