Stem cell-based therapies offer tremendous potential for skin regeneration following injury and disease. Functional stem cell units have been described throughout all layers of human skin and the collective physical and chemical microenvironmental cues that enable this regenerative potential are known as the stem cell niche. Stem cells in the hair follicle bulge, interfollicular epidermis, dermal papillae, and perivascular space have been closely investigated as model systems for niche-driven regeneration. These studies suggest that stem cell strategies for skin engineering must consider the intricate molecular and biologic features of these niches. Innovative biomaterial systems that successfully recapitulate these microenvironments will facilitate progenitor cell-mediated skin repair and regeneration. 1. Introduction Skin serves as the interface with the external world and maintains key homeostatic functions throughout life. This regenerative process is often overlooked until a significant exogenous and/or physiologic insult disrupts our ability to maintain skin homeostasis [1]. Complications of normal repair often result in chronic wounds, excessive scarring, or even malignant transformation, cutaneous diseases that contribute substantially to the global health burden [2, 3]. As human populations prone to inadequate healing (such as the aged, obese, and diabetics) continue to expand, novel therapies to treat dysfunctional skin repair and regeneration will become more critical. Tissue regeneration has been demonstrated in multiple invertebrate and vertebrate species [4]. In humans, even complex tissues can regenerate without any permanent sequelae, such as liver, nerves, and skin. Although the typical result after significant organ injury is the formation of scar, regeneration after extensive skin and soft tissue trauma has been reported, most notably after digit tip amputation [5]. It is well accepted that human skin maintains the ability to regenerate; the question for researchers and clinicians is how to harness this potential to treat cutaneous injury and disease. The integumentary system is a highly complex and dynamic system composed of myriad cell types and matrix components. Numerous stem cell populations have been identified in skin and current research indicates that these cells play a vital role in skin development, repair, and homeostasis [1, 6, 7]. In general, stem cells are defined by their ability to self-renew and their capacity to differentiate into function-specific daughter cells. These progenitor cells have been isolated from all
References
[1]
C. Blanpain and E. Fuchs, “Epidermal homeostasis: a balancing act of stem cells in the skin,” Nature Reviews Molecular Cell Biology, vol. 10, no. 3, pp. 207–217, 2009.
[2]
C. K. Sen, G. M. Gordillo, S. Roy et al., “Human skin wounds: a major and snowballing threat to public health and the economy,” Wound Repair and Regeneration, vol. 17, no. 6, pp. 763–771, 2009.
[3]
S. Aarabi, M. T. Longaker, and G. C. Gurtner, “Hypertrophic scar formation following burns and trauma: new approaches to treatment,” PLoS Medicine, vol. 4, no. 9, article e234, 2007.
[4]
G. C. Gurtner, S. Werner, Y. Barrandon, and M. T. Longaker, “Wound repair and regeneration,” Nature, vol. 453, no. 7193, pp. 314–321, 2008.
[5]
Y. Rinkevich, P. Lindau, H. Ueno, M. T. Longaker, and I. L. Weissman, “Germ-layer and lineage-restricted stem/progenitors regenerate the mouse digit tip,” Nature, vol. 476, pp. 409–413, 2011.
[6]
E. Fuchs and J. A. Nowak, “Building epithelial tissues from skin stem cells,” Cold Spring Harbor Symposia on Quantitative Biology, vol. 73, pp. 333–350, 2008.
[7]
X. Yan and D. M. Owens, “The skin: a home to multiple classes of epithelial progenitor cells,” Stem Cell Reviews, vol. 4, no. 2, pp. 113–118, 2008.
[8]
M. Ito, Y. Liu, Z. Yang et al., “Stem cells in the hair follicle bulge contribute to wound repair but not to homeostasis of the epidermis,” Nature Medicine, vol. 11, no. 12, pp. 1351–1354, 2005.
[9]
V. Levy, C. Lindon, B. D. Harfe, and B. A. Morgan, “Distinct stem cell populations regenerate the follicle and interfollicular epidermis,” Developmental Cell, vol. 9, no. 6, pp. 855–861, 2005.
[10]
A. M. Hocking and N. S. Gibran, “Mesenchymal stem cells: paracrine signaling and differentiation during cutaneous wound repair,” Experimental Cell Research, vol. 316, no. 14, pp. 2213–2219, 2010.
[11]
L. Chen, E. E. Tredget, P. Y. G. Wu, Y. Wu, and Y. Wu, “Paracrine factors of mesenchymal stem cells recruit macrophages and endothelial lineage cells and enhance wound healing,” PLoS ONE, vol. 3, no. 4, Article ID e1886, 2008.
[12]
B. S. Yoon, J. H. Moon, E. K. Jun et al., “Secretory profiles and wound healing effects of human amniotic fluid-derived mesenchymal stem cells,” Stem Cells and Development, vol. 19, no. 6, pp. 887–902, 2010.
[13]
E. V. Badiavas and V. Falanga, “Treatment of chronic wounds with bone marrow-derived cells,” Archives of Dermatology, vol. 139, no. 4, pp. 510–516, 2003.
[14]
N. R. Dash, S. N. Dash, P. Routray, S. Mohapatra, and P. C. Mohapatra, “Targeting nonhealing ulcers of lower extremity in human through autologous bone marrow-derived mesenchymal stem cells,” Rejuvenation Research, vol. 12, no. 5, pp. 359–366, 2009.
[15]
V. Falanga, S. Iwamoto, M. Chartier et al., “Autologous bone marrow-derived cultured mesenchymal stem cells delivered in a fibrin spray accelerate healing in murine and human cutaneous wounds,” Tissue Engineering, vol. 13, no. 6, pp. 1299–1312, 2007.
[16]
S. Werner and R. Grose, “Regulation of wound healing by growth factors and cytokines,” Physiological Reviews, vol. 83, no. 3, pp. 835–870, 2003.
[17]
Y. Wu, L. Chen, P. G. Scott, and E. E. Tredget, “Mesenchymal stem cells enhance wound healing through differentiation and angiogenesis,” Stem Cells, vol. 25, no. 10, pp. 2648–2659, 2007.
[18]
K. C. Rustad, V. W. Wong, M. Sorkin, et al., “Enhancement of mesenchymal stem cell angiogenic capacity and stemness by a biomimetic hydrogel scaffold,” Biomaterials, vol. 33, no. 1, pp. 80–90, 2012.
[19]
L. Li and T. Xie, “Stem cell niche: structure and function,” Annual Review of Cell and Developmental Biology, vol. 21, pp. 605–631, 2005.
[20]
K. A. Moore and I. R. Lemischka, “Stem cells and their niches,” Science, vol. 311, no. 5769, pp. 1880–1885, 2006.
[21]
E. Fuchs, “Skin stem cells: rising to the surface,” Journal of Cell Biology, vol. 180, no. 2, pp. 273–284, 2008.
[22]
C. Blanpain and E. Fuchs, “Epidermal stem cells of the skin,” Annual Review of Cell and Developmental Biology, vol. 22, pp. 339–373, 2006.
[23]
L. Yang and R. Peng, “Unveiling hair follicle stem cells,” Stem Cell Reviews and Reports, vol. 6, no. 4, pp. 658–664, 2010.
[24]
R. J. Morris, Y. Liu, L. Marles et al., “Capturing and profiling adult hair follicle stem cells,” Nature Biotechnology, vol. 22, no. 4, pp. 411–417, 2004.
[25]
T. Tumbar, G. Guasch, V. Greco et al., “Defining the epithelial stem cell niche in skin,” Science, vol. 303, no. 5656, pp. 359–363, 2004.
[26]
E. Fuchs, “Finding one's niche in the skin,” Cell Stem Cell, vol. 4, no. 6, pp. 499–502, 2009.
[27]
C. Margadant, R. A. Charafeddine, and A. Sonnenberg, “Unique and redundant functions of integrins in the epidermis,” The FASEB Journal, vol. 24, no. 11, pp. 4133–4152, 2010.
[28]
V. Marthiens, I. Kazanis, L. Moss, K. Long, and C. Ffrench-Constant, “Adhesion molecules in the stem cell niche—more than just staying in shape?” Journal of Cell Science, vol. 123, no. 10, pp. 1613–1622, 2010.
[29]
C. Jamora, R. DasGupta, P. Kocieniewski, and E. Fuchs, “Links between signal transduction, transcription and adhesion in epithelial bud development,” Nature, vol. 422, no. 6929, pp. 317–322, 2003.
[30]
M. V. Plikus, J. A. Mayer, D. de la Cruz et al., “Cyclic dermal BMP signalling regulates stem cell activation during hair regeneration,” Nature, vol. 451, no. 7176, pp. 340–344, 2008.
[31]
N. Li, M. Fukunaga-Kalabis, H. Yu et al., “Human dermal stem cells differentiate into functional epidermal melanocytes,” Journal of Cell Science, vol. 123, no. 6, pp. 853–860, 2010.
[32]
B. Li, Y. W. Zheng, Y. Sano, and H. Taniguchi, “Evidence for mesenchymal-epithelial transition associated with mouse hepatic stem cell differentiation,” PLoS ONE, vol. 6, no. 2, Article ID e17092, 2011.
[33]
Y. C. Hsu, H. A. Pasolli, and E. Fuchs, “Dynamics between stem cells, niche, and progeny in the hair follicle,” Cell, vol. 144, no. 1, pp. 92–105, 2011.
[34]
J. C. Kellner and P. A. Coulombe, “SKPing a hurdle: Sox2 and adult dermal stem cells,” Cell Stem Cell, vol. 5, no. 6, pp. 569–570, 2009.
[35]
R. R. Driskell, A. Giangreco, K. B. Jensen, K. W. Mulder, and F. M. Watt, “Sox2-positive dermal papilla cells specify hair follicle type in mammalian epidermis,” Development, vol. 136, no. 16, pp. 2815–2823, 2009.
[36]
J. Biernaskie, M. Paris, O. Morozova et al., “SKPs derive from hair follicle precursors and exhibit properties of adult dermal stem cells,” Cell Stem Cell, vol. 5, no. 6, pp. 610–623, 2009.
[37]
J. G. Toma, M. Akhavan, K. J. L. Fernandes et al., “Isolation of multipotent adult stem cells from the dermis of mammalian skin,” Nature Cell Biology, vol. 3, no. 9, pp. 778–784, 2001.
[38]
K. J. L. Fernandes, I. A. McKenzie, P. Mill et al., “A dermal niche for multipotent adult skin-derived precursor cells,” Nature Cell Biology, vol. 6, no. 11, pp. 1082–1093, 2004.
[39]
J. G. Toma, I. A. McKenzie, D. Bagli, and F. D. Miller, “Isolation and characterization of multipotent skin-derived precursors from human skin,” Stem Cells, vol. 23, no. 6, pp. 727–737, 2005.
[40]
H. Yamanishi, S. Fujiwara, and T. Soma, “Perivascular localization of dermal stem cells in human scalp,” Experimental Dermatology, vol. 21, no. 1, pp. 78–80, 2012.
[41]
T. P. Lozito and R. S. Tuan, “Mesenchymal stem cells inhibit both endogenous and exogenous MMPs via secreted TIMPs,” Journal of Cellular Physiology, vol. 226, no. 2, pp. 385–396, 2011.
[42]
K. Lorenz, M. Sicker, E. Schmelzer et al., “Multilineage differentiation potential of human dermal skin-derived fibroblasts,” Experimental Dermatology, vol. 17, no. 11, pp. 925–932, 2008.
[43]
H. I. Huang, S. K. Chen, Q. D. Ling, C. C. Chien, H. T. Liu, and S. H. Chan, “Multilineage differentiation potential of fibroblast-like stromal cells derived from human skin,” Tissue Engineering A, vol. 16, no. 5, pp. 1491–1501, 2010.
[44]
E. Y. Lee, Y. Xia, W. S. Kim et al., “Hypoxia-enhanced wound-healing function of adipose-derived stem cells: Increase in stem cell proliferation and up-regulation of VEGF and bFGF,” Wound Repair and Regeneration, vol. 17, no. 4, pp. 540–547, 2009.
[45]
S. Natesan, N. L. Wrice, D. G. Baer, and R. J. Christy, “Debrided skin as a source of autologous stem cells for wound repair,” Stem Cells, vol. 29, no. 8, pp. 1219–1230, 2011.
[46]
J. H. Jeong, “Adipose stem cells and skin repair,” Current Stem Cell Research and Therapy, vol. 5, no. 2, pp. 137–140, 2010.
[47]
A. C. W. Zannettino, S. Paton, A. Arthur et al., “Multipotential human adipose-derived stromal stem cells exhibit a perivascular phenotype in vitro and in vivo,” Journal of Cellular Physiology, vol. 214, no. 2, pp. 413–421, 2008.
[48]
C. S. Lin, Z. C. Xin, C. H. Deng, H. Ning, G. Lin, and T. F. Lue, “Defining adipose tissue-derived stem cells in tissue and in culture,” Histology and Histopathology, vol. 25, no. 6, pp. 807–815, 2010.
[49]
Y. I. Yang, H. I. Kim, M. Y. Choi et al., “Ex vivo organ culture of adipose tissue for in situ mobilization of adipose-derived stem cells and defining the stem cell niche,” Journal of Cellular Physiology, vol. 224, no. 3, pp. 807–816, 2010.
[50]
G. Lin, M. Garcia, H. Ning et al., “Defining stem and progenitor cells within adipose tissue,” Stem Cells and Development, vol. 17, no. 6, pp. 1053–1063, 2008.
[51]
W. Tang, D. Zeve, J. M. Suh et al., “White fat progenitor cells reside in the adipose vasculature,” Science, vol. 322, no. 5901, pp. 583–586, 2008.
[52]
Y. Cao, “Angiogenesis modulates adipogenesis and obesity,” Journal of Clinical Investigation, vol. 117, no. 9, pp. 2362–2368, 2007.
[53]
R. K. Jain, “Molecular regulation of vessel maturation,” Nature Medicine, vol. 9, no. 6, pp. 685–693, 2003.
[54]
D. O. Traktuev, D. N. Prater, S. Merfeld-Clauss et al., “Robust functional vascular network formation in vivo by cooperation of adipose progenitor and endothelial cells,” Circulation Research, vol. 104, no. 12, pp. 1410–1420, 2009.
[55]
E. Festa, J. Fretz, R. Berry, et al., “Adipocyte lineage cells contribute to the skin stem cell niche to drive hair cycling,” Cell, vol. 146, no. 5, pp. 761–771, 2011.
[56]
E. S. Place, N. D. Evans, and M. M. Stevens, “Complexity in biomaterials for tissue engineering,” Nature Materials, vol. 8, no. 6, pp. 457–470, 2009.
[57]
A. Charruyer and R. Ghadially, “Stem cells and tissue-engineered skin,” Skin Pharmacology and Physiology, vol. 22, no. 2, pp. 55–62, 2009.
[58]
R. A. F. Clark, K. Ghosh, and M. G. Tonnesen, “Tissue engineering for cutaneous wounds,” Journal of Investigative Dermatology, vol. 127, no. 5, pp. 1018–1029, 2007.
[59]
C. Dieckmann, R. Renner, L. Milkova, and J. C. Simon, “Regenerative medicine in dermatology: biomaterials, tissue engineering, stem cells, gene transfer and beyond,” Experimental Dermatology, vol. 19, no. 8, pp. 697–706, 2010.
[60]
J. P. Glotzbach, V. W. Wong, G. C. Gurtner, and M. T. Longaker, “Regenerative Medicine,” Current Problems in Surgery, vol. 48, no. 3, pp. 148–212, 2011.
[61]
A. D. Metcalfe and M. W. J. Ferguson, “Tissue engineering of replacement skin: the crossroads of biomaterials, wound healing, embryonic development, stem cells and regeneration,” Journal of the Royal Society Interface, vol. 4, no. 14, pp. 413–437, 2007.
[62]
E. L. Chaikof, H. Matthew, J. Kohn, A. G. Mikos, G. D. Prestwich, and C. M. Yip, “Biomaterials and scaffolds in reparative medicine,” Annals of the New York Academy of Sciences, vol. 961, pp. 96–105, 2002.
[63]
E. Dawson, G. Mapili, K. Erickson, S. Taqvi, and K. Roy, “Biomaterials for stem cell differentiation,” Advanced Drug Delivery Reviews, vol. 60, no. 2, pp. 215–228, 2008.
[64]
A. D. Metcalfe and M. W. J. Ferguson, “Bioengineering skin using mechanisms of regeneration and repair,” Biomaterials, vol. 28, no. 34, pp. 5100–5113, 2007.
[65]
D. F. Williams, “On the nature of biomaterials,” Biomaterials, vol. 30, no. 30, pp. 5897–5909, 2009.
[66]
R. Langer and D. A. Tirrell, “Designing materials for biology and medicine,” Nature, vol. 428, no. 6982, pp. 487–492, 2004.
[67]
P. Domachuk, K. Tsioris, F. G. Omenetto, and D. L. Kaplan, “Bio-microfluidics: biomaterials and biomimetic designs,” Advanced Materials, vol. 22, no. 2, pp. 249–260, 2010.
[68]
T. Dvir, B. P. Timko, D. S. Kohane, and R. Langer, “Nanotechnological strategies for engineering complex tissues,” Nature Nanotechnology, vol. 6, no. 1, pp. 13–22, 2011.
[69]
P. X. Ma, “Biomimetic materials for tissue engineering,” Advanced Drug Delivery Reviews, vol. 60, no. 2, pp. 184–198, 2008.
[70]
R. Peerani and P. W. Zandstra, “Enabling stem cell therapies through synthetic stem cell-niche engineering,” Journal of Clinical Investigation, vol. 120, no. 1, pp. 60–70, 2010.
[71]
S. Tanimura, Y. Tadokoro, K. Inomata et al., “Hair follicle stem cells provide a functional niche for melanocyte stem cells,” Cell Stem Cell, vol. 8, no. 2, pp. 177–187, 2011.
[72]
H. Fujiwara, M. Ferreira, G. Donati et al., “The basement membrane of hair follicle stem cells is a muscle cell niche,” Cell, vol. 144, no. 4, pp. 577–589, 2011.
[73]
H. J. Stark, K. Boehnke, N. Mirancea et al., “Epidermal homeostasis in long-term scaffold-enforced skin equivalents,” Journal of Investigative Dermatology Symposium Proceedings, vol. 11, no. 1, pp. 93–105, 2006.
[74]
N. Segal, F. Andriani, L. Pfeiffer et al., “The basement membrane microenvironment directs the normalization and survival of bioengineered human skin equivalents,” Matrix Biology, vol. 27, no. 3, pp. 163–170, 2008.
[75]
J. Kruegel and N. Miosge, “Basement membrane components are key players in specialized extracellular matrices,” Cellular and Molecular Life Sciences, vol. 67, no. 17, pp. 2879–2895, 2010.
[76]
R. K. Schneider, J. Anraths, R. Kramann et al., “The role of biomaterials in the direction of mesenchymal stem cell properties and extracellular matrix remodelling in dermal tissue engineering,” Biomaterials, vol. 31, no. 31, pp. 7948–7959, 2010.
[77]
Y. Zhou, Z. Yan, H. Zhang, et al., “Expansion and delivery of adipose-derived mesenchymal stem cells on three microcarriers for soft tissue regeneration,” Tissue Engineering A, vol. 17, no. 23-24, pp. 2981–2997, 2011.
[78]
B. Carrion, C. P. Huang, C. M. Ghajar et al., “Recreating the perivascular niche ex vivo using a microfluidic approach,” Biotechnology and Bioengineering, vol. 107, no. 6, pp. 1020–1028, 2010.
[79]
S. Natesan, G. Zhang, D. G. Baer, T. J. Walters, R. J. Christy, and L. J. Suggs, “A bilayer construct controls adipose-derived stem cell differentiation into endothelial cells and pericytes without growth factor stimulation,” Tissue Engineering A, vol. 17, no. 7-8, pp. 941–953, 2011.
[80]
V. W. Wong, K. C. Rustad, and J. P. Glotzbach, “Pullulan hydrogels improve mesenchymal stem cell delivery into high-oxidative-stress wounds,” Macromolecular Bioscience, vol. 11, no. 11, pp. 1458–1466, 2011.
[81]
L. Li and J. Jiang, “Stem cell niches and endogenous electric fields in tissue repair,” Frontiers of Medicine, vol. 5, no. 1, pp. 40–44, 2011.