Paradigms have started to shift in the orthodontic world since the introduction of mini-implants in the anchorage armamentarium. Various forms of skeletal anchorage, including miniscrews and miniplates, have been reported in the literature. Recently, great emphasis has been placed on the miniscrew type of temporary anchorage device (TAD). These devices are small, are implanted with a relatively simple surgical procedure, and increase the potential for better orthodontic results. Therefore, miniscrews not only free orthodontists from anchorage-demanding cases, but they also enable clinicians to have good control over tooth movement in 3 dimensions. The miniplate type also produces significant improvements in treatment outcomes and has widened the spectrum of orthodontics. The purpose of this paper is to update clinicians on the current concepts and versatile uses and clinical applications of skeletal anchorage in orthodontics. 1. Introduction The goal of orthodontic treatment is to improve the patient’s life through enhancement of dentofacial functions and esthetics. Anchorage, defined as a resistance to unwanted tooth movement [1], is a prerequisite for the orthodontic treatment of dental and skeletal malocclusions [2, 3]. Controlling anchorage helps to avoid undesirable tooth movements. However, even a small reactive force can cause undesirable movements; it is important to have absolute anchorage to avoid them [4, 5]. Absolute or infinite anchorage is defined as no movement of the anchorage unit (zero anchorage loss) as a consequence to the reaction forces applied to move teeth [1]. Such an anchorage can only be obtained by using ankylosed teeth or dental implants as anchors, both relying on bone to inhibit movement [6]. Anchorage provided by devices, such as implants or miniscrew implants fixed to bone, may be obtained by enhancing the support to the reactive unit (indirect anchorage) or by fixing the anchor units (direct anchorage), thus facilitating skeletal anchorage. Orthodontic anchorage is an important factor in obtaining good treatment results. Stable anchorage is a pre-requisite for orthodontic treatment with fixed appliances. Traditional appliances for reinforcement of anchorage have included headgear and intraoral elastics. The inclusion of implants for skeletal anchorage can move a tooth without the use of headgear and intraoral elastics. Skeletal anchorage with temporary anchorage devices (TADs) has been widely incorporated into orthodontic treatment for expanding the boundary of tooth movement without patient compliance [7–10]. TAD
References
[1]
J. Daskalogiannakis, Glossary of Oorthodontic Terms, Quintessence, Leipzig, Germany, 2000.
[2]
P. K. Turley, C. Kean, J. Schur et al., “Orthodontic force application to titanium endosseous implants,” Angle Orthodontist, vol. 58, no. 2, pp. 151–162, 1988.
[3]
M. A. Papadopoulos, “Overview of the intra-maxillary non-compliance appliances with absolute anchorage,” in Orthodontic Treatment for the Class II Non-Compliant Patient: Current Principles and Techniques, M. A. Papadopoulos, Ed., pp. 341–344, Elsevier, Mosby, Edinburgh, UK, 2006.
[4]
S. Weinstein, D. C. Haak, L. Y. Morris, B. B. Snyder, and H. E. Attaway, “On equilibrium theory of tooth position,” The Angle Orthodontist, vol. 33, pp. 1–26, 1963.
[5]
J. J. Pilon, A. M. Kuijpers-Jagtman, and J. C. Maltha, “Magnitude of orthodontic forces and rate of bodily tooth movement. An experimental study,” American Journal of Orthodontics & Dentofacial Orthopedics, vol. 110, no. 1, pp. 16–23, 1996.
[6]
B. Melsen and D. Garbo, “Treating the “impossible case” with the use of the Aarhus Anchorage System,” Orthodontics, vol. 1, pp. 13–20, 2004.
[7]
A. Costa, M. Raffainl, and B. Melsen, “Miniscrews as orthodontic anchorage: a preliminary report,” The International Journal of Adult Orthodontics and Orthognathic Surgery, vol. 13, no. 3, pp. 201–209, 1998.
[8]
J. Sugawara, “Dr. Junji Sugawara on the skeletal anchorage system. Interview by Dr. Larry W. White,” Journal of Clinical Orthodontics, vol. 33, no. 12, pp. 689–696, 1999.
[9]
J. Mah and F. Bergstrand, “Temporary anchorage devices: a status report,” Journal of Clinical Orthodontics, vol. 39, no. 3, pp. 132–153, 2005.
[10]
J. H. Sung, H. M. Kyung, S. M. Bae, H. S. Park, O. W. Kwon, and J. A. McNamara, Microimplants in Orthodontics, Dentos, Daegu, Korea, 2006.
[11]
M. Umemori, J. Sugawara, H. Mitani, H. Nagasaka, and H. Kawamura, “Skeletal anchorage system for open-bite correction,” American Journal of Orthodontics & Dentofacial Orthopedics, vol. 115, no. 2, pp. 166–174, 1999.
[12]
N. Erverdi, N. Tosun, and A. Keles, “A new anchorage site for the treatment of anterior open bite: zygomatic anchorage. A case report,” World Journal of Orthodontics, vol. 3, pp. 147–153, 2002.
[13]
N. Erverdi, A. Keles, and R. Nanda, “The use of skeletal anchorage in open bite treatment: a cephalometric evaluation,” Angle Orthodontist, vol. 74, no. 3, pp. 381–390, 2004.
[14]
K. H. Sherwood, J. G. Burch, and W. J. Thompson, “Closing anterior open bites by intruding molars with titanium miniplate anchorage,” American Journal of Orthodontics & Dentofacial Orthopedics, vol. 122, no. 6, pp. 593–600, 2002.
[15]
H. S. Park, T. G. Kwon, and O. W. Kwon, “Treatment of open bite with microscrew implant anchorage,” American Journal of Orthodontics & Dentofacial Orthopedics, vol. 126, no. 5, pp. 627–636, 2004.
[16]
C. C. J. Yao, J. J. Lee, H. Y. Chen, Z. C. J. Chang, H. F. Chang, and Y. J. Chen, “Maxillary molar intrusion with fixed appliances and mini-implant anchorage studied in three dimensions,” Angle Orthodontist, vol. 75, no. 5, pp. 754–760, 2005.
[17]
C. C. J. Yao, C. B. Wu, H. Y. Wu, S. H. Kok, H. F. F. Chang, and Y. J. Chen, “Intrusion of the overerupted upper left first and second molars by mini-implants with partial-fixed orthodontic appliances: a case report,” Angle Orthodontist, vol. 74, no. 4, pp. 550–557, 2004.
[18]
J. Cope and J. Graham, “Treatment planning for temporary anchorage device applications,” in OrthoTADs: The Clinical Guide and Atlas, J. Cope, Ed., pp. 67–88, Under Dog Media, LP, Dallas, Tex, USA, 2007.
[19]
S. Kuroda, Y. Sugawara, T. Deguchi, H. M. Kyung, and T. Takano-Yamamoto, “Clinical use of miniscrew implants as orthodontic anchorage: success rates and postoperative discomfort,” American Journal of Orthodontics & Dentofacial Orthopedics, vol. 131, no. 1, pp. 9–15, 2007.
[20]
G. C. Heymann and J. F. C. Tulloch, “Implantable devices as orthodontic anchorage: a review of current treatment modalities,” Journal of Esthetic and Restorative Dentistry, vol. 18, no. 2, pp. 68–80, 2006.
[21]
J. Prabhu and R. R. Cousley, “Current products and practice: bone anchorage devices in orthodontics,” Journal of Orthodontics, vol. 33, no. 4, pp. 288–307, 2006.
[22]
W. E. Roberts, F. R. Helm, K. J. Marshall, and R. K. Gongloff, “Rigid endosseous implants for orthodontic and orthopedic anchorage,” Angle Orthodontist, vol. 59, no. 4, pp. 247–256, 1989.
[23]
J. W. Freudenthaler, R. Haas, and H. P. Bantleon, “Bicortical titanium screws for critical orthodontic anchorage in the mandible: a preliminary report on clinical applications,” Clinical Oral Implants Research, vol. 12, no. 4, pp. 358–363, 2001.
[24]
H. Wehrbein, H. Feifel, and P. Diedrich, “Palatal implant anchorage reinforcement of posterior teeth: a prospective study,” American Journal of Orthodontics & Dentofacial Orthopedics, vol. 116, no. 6, pp. 678–686, 1999.
[25]
H. Wehrbein, J. Glatzmaier, U. Mundwiller, and P. Diedrich, “The Orthosystem—a new implant system for orthodontic anchorage in the palate,” Journal of Orofacial Orthopedics, vol. 57, no. 3, pp. 142–153, 1996.
[26]
H. Wehrbein, B. R. Merz, and P. Diedrich, “Palatal bone support for orthodontic implant anchorage—a clinical and radiological study,” European Journal of Orthodontics, vol. 21, no. 1, pp. 65–70, 1999.
[27]
P. I. Br?nemark, B. O. Hansson, R. Adell et al., “Osseointegrated implants in the treatment of the edentulous jaw. Experience from a 10-year period,” Scandinavian Journal of Plastic and Reconstructive Surgery. Supplementum, vol. 16, pp. 1–132, 1977.
[28]
K. W. Higuchi and J. M. Slack, “The use of titanium fixtures for intraoral anchorage to facilitate orthodontic tooth movement,” The International Journal of Oral & Maxillofacial Implants, vol. 6, no. 3, pp. 338–344, 1991.
[29]
S. M. Bae, H. S. Park, H. M. Kyung, O. W. Kwon, and J. H. Sung, “Clinical application of micro-implant anchorage,” Journal of Clinical Orthodontics, vol. 36, no. 5, pp. 298–302, 2002.
[30]
U. Fritz, A. Ehmer, and P. Diedrich, “Clinical suitability of titanium microscrews for orthodontic anchorage—preliminary experiences,” Journal of Orofacial Orthopedics, vol. 65, no. 5, pp. 410–418, 2004.
[31]
T. Deguchi, T. Takano-Yamamoto, R. Kanomi, J. K. Hartsfield, W. E. Roberts, and L. P. Garetto, “The use of small titanium screws for orthodontic anchorage,” Journal of Dental Research, vol. 82, no. 5, pp. 377–381, 2003.
[32]
A. Carano, S. Velo, P. Leone, and G. Siciliani, “Clinical applications of the Miniscrew Anchorage system,” Journal of Clinical Orthodontics, vol. 39, no. 1, pp. 9–24, 2005.
[33]
C. Arcuri, F. Muzzi, F. Santini, A. Barlattani, and A. Giancotti, “Five years of experience using palatal mini-implants for orthodontic anchorage,” Journal of Oral and Maxillofacial Surgery, vol. 65, no. 12, pp. 2492–2497, 2007.
[34]
B. Vande Vannet, M. M. Sabzevar, H. Wehrbein, and K. Asscherickx, “Osseointegration of miniscrews: a histomorphometric evaluation,” European Journal of Orthodontics, vol. 29, no. 5, pp. 437–442, 2007.
[35]
J. C. Rinaldi and V. E. Arana-Chavez, “Ultrastructure of the interface between periodontal tissues and titanium mini-implants,” Angle Orthodontist, vol. 80, no. 3, pp. 459–465, 2010.
[36]
H. Wehrbein, B. R. Merz, P. Diedrich, and J. Glatzmaier, “The use of palatal implants for orthodontic anchorage: design and clinical application of the orthosystem,” Clinical Oral Implants Research, vol. 7, no. 2, pp. 410–416, 1996.
[37]
T. Bernhart, J. Freudenthaler, O. D?rtbudak, H. P. Bantleon, and G. Watzek, “Short epithetic implants for orthodontie anchorage in the paramedian region of the palate—a clinical study,” Clinical Oral Implants Research, vol. 12, no. 6, pp. 624–631, 2001.
[38]
H. Wehrbein and B. R. Merz, “Aspects of the use of endosseous palatal implants in orthodontic therapy,” Journal of Esthetic Dentistry, vol. 10, no. 6, pp. 315–324, 1998.
[39]
H. Wehrbein, B. R. Merz, C. H. F. H?mmerle, and N. P. Lang, “Bone-to-implant contact of orthodontic implants in humans subjected to horizontal loading,” Clinical Oral Implants Research, vol. 9, no. 5, pp. 348–353, 1998.
[40]
K. Chung, S. H. Kim, and Y. Kook, “C-orthodontic microimplant for distalization of mandibular dentition in class III correction,” Angle Orthodontist, vol. 75, no. 1, pp. 119–128, 2005.
[41]
J. S. Lee, H. S. Park, and H. M. Kyung, “Micro-implant anchorage for lingual treatment of a skeletal Class II malocclusion,” Journal of Clinical Orthodontics, vol. 35, no. 10, pp. 643–647, 2001.
[42]
H. S. Park, S. M. Bae, H. M. Kyung, and J. H. Sung, “Micro-implant anchorage for treatment of skeletal Class I bialveolar protrusion,” Journal of Clinical Orthodontics, vol. 35, no. 7, pp. 417–422, 2001.
[43]
H. S. Park and T. G. Kwon, “Sliding mechanics with microscrew implant anchorage,” Angle Orthodontist, vol. 74, no. 5, pp. 703–710, 2004.
[44]
H. S. Park, O. W. Kwon, and J. H. Sung, “Microscrew implant anchorage sliding mechanics,” World Journal of Orthodontics, vol. 6, no. 3, pp. 265–274, 2005.
[45]
H. De Clerck, V. Geerinckx, and S. Siciliano, “The zygoma anchorage system,” Journal of Clinical Orthodontics, vol. 36, no. 8, pp. 455–459, 2002.
[46]
K. R. Chung, Y. S. Kim, J. L. Linton, and Y. J. Lee, “The miniplate with tube for skeletal anchorage,” Journal of Clinical Orthodontics, vol. 36, no. 7, pp. 407–412, 2002.
[47]
J. D. Jenner and B. N. Fitzpatrick, “Skeletal anchorage utilising bone plates,” Australian Orthodontic Journal, vol. 9, no. 2, pp. 231–233, 1985.
[48]
C. Rattanayatikul, K. Godfrey, J. Chawengchettanon, and T. Vattraraphoudet, “Miniplates and screws in treatment of skeletal Class III malocclusion with missing posterior teeth. A case report,” Australian Orthodontic Journal, vol. 22, no. 2, pp. 167–172, 2006.
[49]
Y. C. Tseng, C. M. Chen, and H. P. Chang, “Use of a miniplate for skeletal anchorage in the treatment of a severely impacted mandibular second molar,” British Journal of Oral and Maxillofacial Surgery, vol. 46, no. 5, pp. 406–407, 2008.
[50]
Y. C. Park, J. H. Chu, Y. J. Choi, and N. C. Choi, “Extraction space closure with vacuum-formed splints and miniscrew anchorage,” Journal of Clinical Orthodontics, vol. 39, no. 2, pp. 76–79, 2005.
[51]
B. Thiruvenkatachari, A. Pavithranand, K. Rajasigamani, and H. M. Kyung, “Comparison and measurement of the amount of anchorage loss of the molars with and without the use of implant anchorage during canine retraction,” American Journal of Orthodontics & Dentofacial Orthopedics, vol. 129, no. 4, pp. 551–554, 2006.
[52]
S. Kuroda, A. Katayama, and T. Takano-Yamamoto, “Severe anterior open-bite case treated using titanium screw anchorage,” Angle Orthodontist, vol. 74, no. 4, pp. 558–567, 2004.
[53]
K. H. Sherwood, J. Burch, and W. Thompson, “Intrusion of supererupted molars with titanium miniplate anchorage,” Angle Orthodontist, vol. 73, no. 5, pp. 597–601, 2003.
[54]
C. H. Paik, Y. J. Woo, and R. L. Boyd, “Treatment of an adult patient with vertical maxillary excess using miniscrew fixation,” Journal of Clinical Orthodontics, vol. 37, no. 8, pp. 423–428, 2003.
[55]
K. H. Sherwood and J. G. Burch, “Skeletally based miniplate supported orthodontic anchorage,” Journal of Oral and Maxillofacial Surgery, vol. 63, no. 2, pp. 279–284, 2005.
[56]
J. Sugawara, U. B. Baik, M. Umemori et al., “Treatment and posttreatment dentoalveolar changes following intrusion of mandibular molars with application of a skeletal anchorage system (SAS) for open bite correction,” The International Journal of Adult Orthodontics and Orthognathic Surgery, vol. 17, no. 4, pp. 243–253, 2002.
[57]
T. D. Creekmore and M. K. Eklund, “The possibility of skeletal anchorage,” Journal of Clinical Orthodontics, vol. 17, no. 4, pp. 266–269, 1983.
[58]
H. Ohnishi, T. Yagi, Y. Yasuda, and K. Takada, “A mini-implant for orthodontic anchorage in a deep overbite case,” Angle Orthodontist, vol. 75, no. 3, pp. 444–452, 2005.
[59]
S. M. Bae and H. M. Kyung, “Mandibular molar intrusion with miniscrew anchorage,” Journal of Clinical Orthodontics, vol. 40, no. 2, pp. 107–108, 2006.
[60]
J. C. Lin, E. J. Liou, and C. L. Yeh, “Intrusion of overerupted maxillary molars with miniscrew anchorage,” Journal of Clinical Orthodontics, vol. 40, no. 6, pp. 378–383, 2006.
[61]
J. S. Lee, H. K. Doo, Y. C. Park, S. H. Kyung, and T. K. Kim, “The efficient use of midpalatal miniscrew implants,” Angle Orthodontist, vol. 74, no. 5, pp. 711–714, 2004.
[62]
Y. J. Chang, H. S. Lee, and Y. S. Chun, “Microscrew anchorage for molar intrusion,” Journal of Clinical Orthodontics, vol. 38, no. 6, pp. 325–330, 2004.
[63]
A. Roth, M. Yildirim, and P. Diedrich, “Forced eruption with microscrew anchorage for preprosthetic leveling of the gingival margin: case report,” Journal of Orofacial Orthopedics, vol. 65, no. 6, pp. 513–519, 2004.
[64]
N. D. Kravitz and B. Kusnoto, “Risks and complications of orthodontic miniscrews,” American Journal of Orthodontics & Dentofacial Orthopedics, vol. 131, no. 4, pp. S43–S51, 2007.
[65]
K. Asscherickx, B. V. Vannet, H. Wehrbein, and M. M. Sabzevar, “Root repair after injury from mini-screw,” Clinical Oral Implants Research, vol. 16, no. 5, pp. 575–578, 2005.
[66]
K. Mine, Z. Kanno, T. Muramoto, and K. Soma, “Occlusal forces promote periodontal healing of transplanted teeth and prevent dentoalveolar ankylosis: an experimental study in rats,” Angle Orthodontist, vol. 75, no. 4, pp. 637–644, 2005.
[67]
B. Melsen and C. Verna, “Miniscrew implants: the Aarhus anchorage system,” Seminars in Orthodontics, vol. 11, no. 1, pp. 24–31, 2005.
[68]
C. Morea, G. C. Dominguez, A. V. Wuo, and A. Tortamano, “Surgical guide for optimal positioning of mini-implants,” Journal of Clinical Orthodontics, vol. 39, no. 5, pp. 317–321, 2005.
[69]
K. Dula, R. Mini, P. F. van der Stelt, and D. Buser, “The radiographic assessment of implant patients: decision-making criteria,” International Journal of Oral and Maxillofacial Implants, vol. 16, no. 1, pp. 80–89, 2001.
[70]
E. Y. Suzuki and B. Buranastidporn, “An adjustable surgical guide for miniscrew placement,” Journal of Clinical Orthodontics, vol. 39, no. 10, pp. 588–590, 2005.
[71]
A. Carano, S. Velo, C. Incorvati, and P. Poggio, “Clinical applications of the Mini-Screw-Anchorage-System (M.A.S.) in the maxillary alveolar bone,” Progress in Orthodontics, vol. 5, no. 2, pp. 212–235, 2004.
[72]
M. A. Schnelle, F. M. Beck, R. M. Jaynes, and S. S. Huja, “A radiographic evaluation of the availability of bone for placement of miniscrews,” Angle Orthodontist, vol. 74, no. 6, pp. 832–837, 2004.
[73]
P. M. Poggio, C. Incorvati, S. Velo, and A. Carano, “Safe zones: a guide for miniscrew positioning in the maxillary and mandibular arch,” Angle Orthodontist, vol. 76, no. 2, pp. 191–197, 2006.
[74]
H. M. Kyung, H. S. Park, S. M. Bae, J. H. Sung, and I. B. Kim, “Development of orthodontic micro-implants for intraoral anchorage,” Journal of Clinical Orthodontics, vol. 37, no. 6, pp. 321–328, 2003.
[75]
R. Adell, U. Lekholm, B. Rockler, and P. I. Branemark, “A 15-year study of osseointegrated implants in the treatment of the edentulous jaw,” International Journal of Oral Surgery, vol. 10, no. 6, pp. 387–416, 1981.
[76]
A. Büchter, D. Wiechmann, S. Koerdt, H. P. Wiesmann, J. Piffko, and U. Meyer, “Load-related implant reaction of mini-implants used for orthodontic anchorage,” Clinical Oral Implants Research, vol. 16, no. 4, pp. 473–479, 2005.
[77]
S. J. Cheng, I. Y. Tseng, J. J. Lee, and S. H. Kok, “A prospective study of the risk factors associated with failure of mini-implants used for orthodontic anchorage,” International Journal of Oral and Maxillofacial Implants, vol. 19, no. 1, pp. 100–106, 2004.
[78]
A. Büchter, J. Kleinheinz, H. P. Wiesmann et al., “Biological and biomechanical evaluation of bone remodelling and implant stability after using an osteotome technique,” Clinical Oral Implants Research, vol. 16, no. 1, pp. 1–8, 2005.
[79]
S. Miyawaki, I. Koyama, M. Inoue, K. Mishima, T. Sugahara, and T. Takano-Yamamoto, “Factors associated with the stability of titanium screws placed in the posterior region for orthodontic anchorage,” American Journal of Orthodontics & Dentofacial Orthopedics, vol. 124, no. 4, pp. 373–378, 2003.
[80]
I. H. Orenstein, D. P. Tarnow, H. F. Morris, and S. Ochi, “Factors affecting implant mobility at placement and integration of mobile implants at uncovering,” Journal of Periodontology, vol. 69, no. 12, pp. 1404–1412, 1998.
[81]
W. E. Roberts, K. J. Marshall, and P. G. Mozsary, “Rigid endosseous implant utilized as anchorage to protract molars and close an atrophic extraction site,” Angle Orthodontist, vol. 60, no. 2, pp. 135–152, 1990.
[82]
M. Sevimay, F. Turhan, M. A. Kili?arslan, and G. Eskitascioglu, “Three-dimensional finite element analysis of the effect of different bone quality on stress distribution in an implant-supported crown,” Journal of Prosthetic Dentistry, vol. 93, no. 3, pp. 227–234, 2005.
[83]
C. E. Misch, Contemporary Implant Dentistry, Mosby, St Louis, Mo, USA, 2nd edition, 1998.
[84]
C. E. Misch, “Density of bone: effect on treatment plans, surgical approach, healing, and progressive boen loading,” The International Journal of Oral Implantology, vol. 6, no. 2, pp. 23–31, 1990.
[85]
K. A. Schlegel, F. Kinner, and K. D. Schlegel, “The anatomic basis for palatal implants in orthodontics,” The International Journal of Adult Orthodontics and Orthognathic Surgery, vol. 17, no. 2, pp. 133–139, 2002.
[86]
H. S. Yun, H. J. Kim, and Y. C. Park, The thickness of the maxillary soft tissue and cortical bone related with an orthodontic implantation, thesis, Yonsei University, Seoul, Korea, 2001.
[87]
W. Heidemann, H. Terheyden, and K. L. Gerlach, “Analysis of the osseous/metal interface of drill free screws and self-tapping screws,” Journal of Cranio-Maxillofacial Surgery, vol. 29, no. 2, pp. 69–74, 2001.
[88]
W. Heidemann, H. Terheyden, and K. L. Gerlach, “In vivo studies of screw-bone contact of drill-free screws and conventional self-tapping screws,” Mund-, Kiefer- und Gesichtschirurgie, vol. 5, no. 1, pp. 17–21, 2001.
[89]
B. G. Maino, P. Mura, and J. Bednar, “Miniscrew implants: the Spider Screw anchorage system,” Seminars in Orthodontics, vol. 11, no. 1, pp. 40–46, 2005.
[90]
A. Gantous and J. H. Phillips, “The effects of varying pilot hole size on the holding power of miniscrews and microscrews,” Plastic and Reconstructive Surgery, vol. 95, no. 7, pp. 1165–1169, 1995.
[91]
M. Dalstra, P. M. Cattaneo, and B. Melson, “Load transfer of miniscrews for orthodontic anchorage,” Orthodontics, vol. 1, pp. 53–62, 2004.
[92]
R. Kanomi, “Mini-implant for orthodontic anchorage,” Journal of Clinical Orthodontics, vol. 31, no. 11, pp. 763–767, 1997.
[93]
E. J. W. Liou, B. C. J. Pai, and J. C. Y. Lin, “Do miniscrews remain stationary under orthodontic forces?” American Journal of Orthodontics & Dentofacial Orthopedics, vol. 126, no. 1, pp. 42–47, 2004.
[94]
R. Herman and J. B. Cope, “Miniscrew implants: IMTEC mini ortho implants,” Seminars in Orthodontics, vol. 11, no. 1, pp. 32–39, 2005.
[95]
S. Othman, E. Haugen, and P. Gjermo, “The effect of chlorhexidine supplementation in a periodontal dressing,” Acta Odontologica Scandinavica, vol. 47, no. 6, pp. 361–366, 1989.
[96]
M. A. Sanchez-Garces and C. Gay-Escoda, “Peri-implantitis,” Medicina Oral, Patologia Oral y Cirugia Bucal, vol. 9, supplement, pp. 63–69, 2004.
[97]
A. Costa, G. Pasta, and G. Bergamaschi, “Intraoral hard and soft tissue depths for temporary anchorage devices,” Seminars in Orthodontics, vol. 11, no. 1, pp. 10–15, 2005.
[98]
B. Murray, N. McGuinness, P. Biagioni, P. Hyland, and P. J. Lamey, “A comparative study of the efficacy of Aphtheal? in the management of recurrent minor aphthous ulceration,” Journal of Oral Pathology and Medicine, vol. 34, no. 7, pp. 413–419, 2005.