There are five main institutions that develop research and provide data
regarding photovoltaic energy generation in Brazil, they are: Brazilian
Electricity Regulatory Agency (ANEEL); Energy Research Office (EPE);
International Renewable Energy Agency (IRENA); Institute for the Development of
Alternative Energies in Latin America (IDEAL); and Greener (a research and
consultancy company specialized in the photovoltaic solar energy sector). The
reports provided by these institutions present a large volume of data and
information, this factor makes hard task of understanding the Brazilian
photovoltaic market. Therefore, this paper purposes to present an overview
about the development of photovoltaic generation in Brazil, through of an
unpublished compilation and analysis of the data provided by the institutions
previously cited. For this, initiallythe
factors that contributed to the implementation and expansion of this sector are
presented. Following, it is presented the main resolutions for the
implementation of distributed generation, as well as organizations responsible
for the standardization, operation, testing and expected requirements for
connection of renewable sources in the electrical system. Quantitative data
about energy installed, number of installations approvals, distribution of
installations by sector of society, number homologations by power range and
cost distribution for the implementation of these systems are provided.
Finally, the incentive policies, credit lines and future perspectives for the
development of the photovoltaic sector in Brazil are presented.
References
[1]
Teske, S., Sawyer, S., Schafer, O., Pregger, T., Simon, S., Naegler, T., Schmid, S., Ozdemir, E.D., Pagenkopf, J. and Kleiner, F. (2015) Energy Revolution—A Sustainable World Energy Outlook 2015. 364.
[2]
Silva, R.C., Neto, I.M. and Seifert, S.S. (2016) Electricity Supply Security and the Future Role of Renewable Energy Sources in Brazil. Renewable and Sustainable Energy Reviews, 59, 328-341. https://doi.org/10.1016/j.rser.2016.01.001
[3]
Prado, F.A., Athayde, S., Mossa, J., Bohlman, S., Leite, F. and Smith, A.O. (2016) How Much Is Enough? An Integrated Examination of Energy Security, Economic Growth and Climate Change Related to Hydropower Expansion in Brazil. Renewable and Sustainable Energy Reviews, 53, 1132-1136. https://doi.org/10.1016/j.rser.2015.09.050
[4]
Tolmasquim, M.T. (2016) Energia renovável: Hidráulica, biomassa, eólica, solar, oceânica. Empresa de Pesquisa Energética (EPE), Rio de Janeiro, 452.
[5]
Pinto, T.M., Amaral, K.J. and Janissek, P.R. (2016) Deployment of Photovoltaics in Brazil: Scenarios, Perspectives and Policies for Low-Income Housing. Solar Energy, 133, 73-84. https://doi.org/10.1016/j.solener.2016.03.048
[6]
Ministério de Minas e Energia (2018) Premissas e Custos da Oferta de Energia Elétrica no horizonte 2050. Empresa de Pesquisa Energética, Rio de Janeiro, 53.
[7]
Davidson, J. and Orner, F. (2008) The New Solar Electric Home—The Complete Guide to Photovoltaics for Your Home. Aatec Publications, Michigan, 472.
[8]
Ministério de Minas e Energia (2018) Potencial dos Recursos Energéticos no hori-zonte 2050. Empresa de Pesquisa Energética, Rio de Janeiro, 133.
[9]
Nemet, G.F. (2016) Beyond the Learning Curve: Factors Influencing Cost Reductions in Photovoltaics. Energy Policy, 34, 3218-3232. https://doi.org/10.1016/j.enpol.2005.06.020
[10]
Pickerel, K. (2012) BOS Now Accounts for 68% of Average PV System Pricing. http://solarbuildermag.com/news/bos-now-accounts-for-68-of-average-pv-system
[11]
Montenegro, A.A. (2013) Avaliação do retorno do investimento em sistemas fotovo-ltaicos integrados a residências unifamiliares urbanas no Brasil. MSc Dissertation, Universidade Federal de Santa Catarina, Florianópolis.
[12]
Pinho, J.T. and Galdino, M.A. (2014) Manual de Engenharia para Sistemas Fotovol-taicos. CEPEL-CRESESB, Rio de Janeiro, 530.
[13]
ANEEL (2016) Micro e minigeração distribuída: Sistema de compensação de energia elétrica. Cadernos temáticos, Brasília, 31.
Consulo, M.T., Gimenes, A.L.V., Relva, S.G. and Udaeta, M.E.M. (2019) Basics on Energy Economics of Renewable Power Generation Projects: A Focus on Utility-Scale PV Plants Inclusion on National Grid. Proceedings IREC International Renewable Energy Congress, Sousse, 1-6. https://doi.org/10.1109/IREC.2019.8754593
Assad, V.C.D. and Batista, O.E. (2011) Scenario and Perspective of Distributed Generation in Brazil. Proceedings SBSE Simpósio Brasileiro de Sistemas Elétricos, Niterói, 1-5.
[20]
INMETRO (2011) Requisitos de Avaliação da Conformidade para Sistemas e Equi-pamentos para Energia Fotovoltaica. http://www.inmetro.gov.br/legislacao/rtac/pdf/RTAC001652.pdf
[21]
EPE (2019) Brazilian Energy Balance 2019 Year 2018. Rio de Janeiro, 300.
[22]
IRENA (2019) Renewable Energy Statistics 2019. Abu Dhabi, 398.
[23]
Greener (2019) Pesquisa e Consultoria. Estudo Estratégico: Mercado Fotovoltaico de Geração Distribuída 2° sem 2018. São Paulo, 145.
Instituto IDEAL (2019) O mercado brasileiro de geração distribuída fotovoltaica. Santa Catarina, 66.
[26]
Schutze, A. and Assunção, J.J. (2017) Developing Brazil’s Market for Distributed Solar Generation. Núcleo de Avaliação de Políticas Climáticas PUC-Rio, Rio de Janeiro, 6.
[27]
Correa, R.B., Asano, P.T.L., Benedito, R.S., Chung, H. and Jonathan, S. (2018) Financial Impact of Solar Distributed Generation’s Growth on Distribution Companies’ Revenue. Proceedings SBSE Simposio Brasileiro de Sistemas Eletricos, Niteroi, 1-5. https://doi.org/10.1109/SBSE.2018.8395777
[28]
Bloomberg New Energy Finance (2019) New Energy Outlook 2018. Nova York, 36.
[29]
Colaferro, J.R.Q. (2020) Financiamento da Energia Solar. http://blog.bluesol.com.br/financiamento-de-energia-solar
[30]
Silva, R.M. (2019) O Novo Arranjo Regulatório Proposto pela ANEEL para a Gera-ção Distribuída na Consulta Pública N. 25 de 2019. CONLEG, Brasília, 21.