全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Sustainable Raw Materials in Hot Melt Adhesives: A Review

DOI: 10.4236/ojpchem.2020.103003, PP. 49-65

Keywords: Sustainable Polymers, Hot Melt Adhesives, Starch, Lactic Acid, Soy Protein, Polyamides, Lignin

Full-Text   Cite this paper   Add to My Lib

Abstract:

Hot-melt (HM) adhesives offer advantages over their contemporary water-based and solvent-based adhesives like low volatile organic compounds (VOCs), 100% solid, fast drying, setting etc. In recent years, to reduce their dependence on dwindling petroleum resources and due to the enormous use of HM adhesives in packaging areas that demand 100% recyclability, efforts have been devoted to making these formulations completely bio-based, sustainable and biodegradable. In this attempt, research and developments have been focused on using starch, modified starch, soy protein, polylactides, polyamides, lignin and vegetable oils as a partial/fully replacement to the petrochemical-based polymers. The huge amount of research going on in the field of bio-based polymers has still not reached its complete potential in the field of HM adhesives. In this review paper, HM adhesives based on sustainable raw materials namely starch, modified starch, polyamides, poly (lactic acid), soy protein and lignin are discussed.

References

[1]  Khairullin, I.K. (2013) Adhesive-Melts-the Most Dynamically Developing Area in World Production and Consumption of Adhesives. Polymer Science Series D, 6, 77-81.
https://doi.org/10.1134/S1995421213010073
[2]  Zhang, Z., Macquarrie, D.J., Clark, J.H. and Matharu, A.S. (2014) Chemical Modification of Starch and the Application of Expanded Starch and Its Esters in Hot Melt Adhesive. RSC Adances, 4, 41947-41955.
https://doi.org/10.1039/C4RA08027K
[3]  Pocius, A.V. (2002) Adhesion and Adhesives Technology: An Introduction. Hanser Publishers, Munich, 270-273.
[4]  Tout, R. (2000) A Review of Adhesives for Furniture. International Journal of Adhesion and Adhesives, 20, 269-272.
https://doi.org/10.1016/S0143-7496(00)00002-6
[5]  Tous, L., Ruseckaite, R.A. and Ciannamea, E.M. (2019) Sustainable HM Adhesives Based on Soybean Protein Isolate and Polycaprolactone. Industrial Crops and Products, 135, 153-158.
https://doi.org/10.1016/j.indcrop.2019.04.043
[6]  Billmers, R.J., Paul, C.W., Hatfield, S.F. and Kauffman, T.F. (1994) Starch Ester Based Hot Melt Adhesive. US Patent No. 5360845.
[7]  Lewis, D.N., Schutte, G., Westerhof, H., Janssen, J. and Ketty, W.E. (2008) Environmentally Degradable Polymeric Compounds Their Preparation and Use as Hot melt Adhesive. US Patent No. 7465770.
[8]  White, R.J., Budarin, V.L. and Clark, J.H. (2008) Tuneable Mesoporous Materials from α-D-Polysaccharides. ChemSusChem, 1, 408-411.
https://doi.org/10.1002/cssc.200800012
[9]  Imam, S.H., Bilbao-Sainz, C., Chiou, B.-S., Glenn, G.M. and Orts, W.J. (2013) Biobased Adhesives, Gums, Emulsions, and Binders: Current Trends and Future Prospects. Journal of Adhesion Science and Technology, 27, 1972-1997.
https://doi.org/10.1080/01694243.2012.696892
[10]  John, J., Tang, J. and Bhattacharya, M. (1998) Processing of Biodegradable Blends of Wheat Gluten and Modified Polycaprolactone. Polymer, 39, 2883-2895.
https://doi.org/10.1016/S0032-3861(97)00553-3
[11]  Matzinos, P., Tserki, V., Kontoyiannis, A. and Panayiotou, C. (2002) Processing and Characterization of Starch/Polycaprolactone Products. Polymer Degradation and Stability, 77, 17-24.
https://doi.org/10.1016/S0141-3910(02)00072-1
[12]  Ohtaki, A., Sato, N. and Nakasaki, K. (1998) Biodegradation of Poly-ε-Caprolactone under Controlled Composting Conditions. Polymer Degradation and Stability, 61, 499-505.
https://doi.org/10.1016/S0141-3910(97)00238-3
[13]  Inkinen, S., Stolt, M. and Södergård, A. (2008) Stability Studies on Blends of a Lactic Acid-Based Hot Melt Adhesive and Starch. Journal of Applied Polymer Science, 110, 2467-2474.
https://doi.org/10.1002/app.28605
[14]  Jeon, Y.S., Lee, S.N., Yoon, J.Y., Lee, J.S. and Kim, S.O. (2011) Starch-Based Hot Melt Adhesive. US Patent No. US9428671B2.
[15]  Tizzotti, M.J., Sweedman, M.C., Tang, D., Schaefer, C. and Gilbert, R.G. (2011) New 1H NMR Procedure for the Characterization of Native and Modified Food-Grade Starches. Journal of Agricultural and Food Chemistry, 59, 6913-6919.
https://doi.org/10.1021/jf201209z
[16]  Pedroso, A.G. and Rosa, D.S. (2005) Mechanical, Thermal and Morphological Characterization of Recycled LDPE/Corn Starch Blends. Carbohydrate Polymers, 59, 1-9.
https://doi.org/10.1016/j.carbpol.2004.08.018
[17]  Chen, X.M., Zhong, H., Jia, L.Q., Ning, J.C., Tang, R.G., Qiao, J.L. and Zhang, Z.Y. (2002) Polyamides Derived from Piperazine and Used for Hot-Melt Adhesives: Synthesis and Properties. International Journal of Adhesion and Adhesives, 22, 75-79.
https://doi.org/10.1016/S0143-7496(01)00039-2
[18]  Kanderski, M.D., Vitrano, M.D., Keuler, D.P., Puthanparambil, D., Lambert, J.M. and Morrow, B.J. (2018) Compostable Hot Melt Adhesive. US Patent No. US202000-79981A1.
[19]  Jordan, T., Schmidt, S., Liebert, T. and Heinze, T. (2014) Molten Imidazole—A Starch Solvent. Green Chemistry, 16, 1967-1973.
https://doi.org/10.1039/c3gc41818a
[20]  Gong, L.-Z., Allen, M.L., Mehaffy, J.A., Desai, D.R., Haner, D.L. and Le, T. (2003) Hot Melt Adhesive. US Patent No. US7208541B2.
[21]  Kim, D.J., Kim, H.J. and Yoon, G.H. (2006) Tack and Fracture Energy of Tackified SIS (Styrene-Isoprene-Styrene)-Based Hot-Melt Pressure Sensitive Adhesives (HMPSAs). Journal of Adhesion Science and Technology, 20, 1367-1381.
https://doi.org/10.1163/156856106778456618
[22]  Foran, M., Schoenberg, J. and Ray-Chaudhuri, D. (1991) Water-Resistant Formaldehyde-Free Corrugating Adhesive Compositions. Patent EP0438101 (A2).
[23]  Heinrich, L.A. (2019) Future Opportunities for Bio-Based Adhesives—Advantages beyond Renewability. Green Chemistry, 21, 1866-1888.
https://doi.org/10.1039/C8GC03746A
[24]  Freitas, R.F.R., Klein, C., Pereira, M.P., Duczinski, R.B., Einloft, S., Seferin, M., and Ligabue, R. (2015) Lower Purity Dimer Acid Based Polyamides Used as Hot Melt Adhesives: Synthesis and Properties. Journal of Adhesion Science and Technology, 29, 1860-1872.
https://doi.org/10.1080/01694243.2014.1001961
[25]  Carraway, D., Wann, S., Arnold, R. and Grubbs, J.B. (2017) Biodegradable Hot Melt Adhesives. US Patent No. US20180208812A120.
[26]  Shibata, M., Takachiyo, K.-I., Ozawa, K., Yosomiya, R. and Takeishi, H. (2002) Biodegradable Polyester Composites Reinforced with Short Abaca Fiber. Journal of Applied Polymer Science, 85, 129-138.
https://doi.org/10.1002/app.10665
[27]  Li, W., Bouzidi, L. and Narine, S.S. (2008) Current Research and Development Status and Prospect of Hot-Melt Adhesives: A Review. Industrial & Engineering Chemistry Research, 47, 7524-7532.
https://doi.org/10.1021/ie800189b
[28]  Kauffman, T.F., Wieczorek Jr., J. and Hatfield, S.F. (1996) Starch Based Hot Melt Adhesives for Cigarettes. US Patent No. 5498224.
[29]  Viljanmaa, M., Södergård, A. and Törmälä, P. (2002) Lactic Acid Based Polymers as Hot Melt Adhesives for Packaging Applications. International Journal of Adhesion and Adhesives, 22, 219-226.
https://doi.org/10.1016/S0143-7496(01)00057-4
[30]  Choi, W.Y., Lee, C.M. and Park, H.J. (2006) Development of Biodegradable Hot-Melt Adhesive Based on Poly-ε-Caprolactone and Soy Protein Isolate for Food Packaging System. LWT-Food Science and Technology, 39, 591-597.
https://doi.org/10.1016/j.lwt.2005.04.012
[31]  Wu, C.-S. (2005) Improving Polylactide/Starch Biocomposites by Grafting Polylactide with Acrylic Acid—Characterization and Biodegradability Assessment. Macromolecular Bioscience, 5, 352-361.
https://doi.org/10.1002/mabi.200400159
[32]  Zhong, Z., Sun, X.S., Fang, X. and Ratto, J.A. (2002) Adhesive Strength of Guanidine Hydrochloride Modified Soy Protein for Fiberboard Application. International Journal of Adhesion and Adhesive, 22, 267-272.
https://doi.org/10.1016/S0143-7496(02)00003-9
[33]  Utekar, P., Gabale, H., Khandelwal, A. and Mhaske, S.T. (2017) Hot-Melt Adhesives from Renewable Resources. Progress in Adhesion and Adhesives, 101-114.
https://doi.org/10.1002/9781119407485.ch4
[34]  Samaha, S. H., Nasr, H. E. and Hebeish, A. (2005) Synthesis and Characterization of Starch-Poly (Vinyl Acetate) Graft Copolymers and Their Saponified Form. Journal of Polymer Research, 12, 343-353.
https://doi.org/10.1007/s10965-004-7937-2
[35]  Laine, C., Willberg-Keyriläinen, P., Ropponen, J. and Liitiä, T. (2019) Lignin and Lignin Derivatives as Components in Biobased Hot Melt Adhesives. Journal of Applied Polymer Science, 136, Article ID: 47983.
https://doi.org/10.1002/app.47983
[36]  Ortega-Toro, R., Muñoz, A., Talens, P. and Chiralt, A. (2016) Improvement of Properties of Glycerol Plasticized Starch Films by Blending with a Low Ratio of Polycaprolactone and/or Polyethylene Glycol. Food Hydrocolloids, 56, 9-19.
https://doi.org/10.1016/j.foodhyd.2015.11.029
[37]  Gadhave, R., Srivastava, S., Mahanwar, P. and Gadekar, P. (2019) Lignin: Renewable Raw Material for Adhesive. Open Journal of Polymer Chemistry, 9, 27-38.
https://doi.org/10.4236/ojpchem.2019.92003
[38]  Petrie, E.M. (2012) Biobased Components in Hot Melt Adhesive Formulation. Specialchem4adhesives.
[39]  Kadam, P. and Mhaske, S. (2011) Synthesis and Properties of Polyamide Derived from Piperazine and Lower Purity Dimer Acid as Hot Melt Adhesive. International Journal of Adhesion and Adhesives, 31, 735-742.
https://doi.org/10.1016/j.ijadhadh.2011.06.019
[40]  Whistler, R.L. (1984) Starch: Chemistry and Technology. Academic Press, New York.
[41]  Shogren, R. (2000) Modification of Maize Starch by Thermal Processing in Glacial Acetic Acid. Carbohydrate Polymers, 43, 309-315.
https://doi.org/10.1016/S0144-8617(00)00178-8
[42]  Jennyangel, S. and Dhandapani, R. (2013) Eco-Friendly Biopolymers as Adhesives—An Overview. International Journal of Pharma and Bio Sciences, 4, 524-533.
[43]  Biliaderis, C.G. (2009) Structural Transitions and Related Physical Properties of Starch. In: James, B.M. and Roy, W., Eds., Starch: Chemistry and Technology, 3rd Edition, Academic Press, London, 293-359.
https://doi.org/10.1016/B978-0-12-746275-2.00008-2
[44]  Heinz-Guenther, S., Tauber, G. and Pille-Wolf, W. (1990) Process for Bonding Substrates Impermeable to Water Vapour. US Patent No. US4913969 A.
[45]  Choi, E.J., Kim, C.H. and Park, J.K. (1999) Synthesis and Characterization of Starch-g-Polycaprolactone Copolymer. Macromolecules, 32, 7402-7408.
https://doi.org/10.1021/ma981453f
[46]  Lu, Y., Tighzert, L., Dole, P. and Erre, D. (2005) Preparation and Properties of Starch Thermoplastics Modified with Waterborne Polyurethane from Renewable Resources. Polymer, 46, 9863-9870.
https://doi.org/10.1016/j.polymer.2005.08.026
[47]  Budarin, V., Clark, J.H., Luque, R., Macquarrie, D.J., Milkowski, K. and White, R.J. (2007) Mesoporous Carbonaceous Materials, Preparation and Use Thereof. PCT International Patent WO 2007104798 A2 20070920.
[48]  Shuttleworth, P.S., Clark, J.H., Mantle, R. and Stansfield, N. (2010) Switchable Adhesives for Carpet Tiles: A Major Breakthrough in Sustainable Flooring. Green Chemistry, 12, 798-803.
https://doi.org/10.1039/b922735k
[49]  Coker, J.N. (1976) Adhesive Compositions Consisting Essentially of a Vinyl Alcohol Polymer, a Crystalline Solvent and a Viscosity Reducing Diluent. US Patent No. US4131581A.
[50]  Schulte, H.-G., Tauber, G. and Pille-Wolf, W. (1987) Process for Bonding Substrates Impermeable to Water Vapor. US Patent No. US4913969A.
[51]  Philbin, M.T., Billmers, R.L. and Paul, C.W. (1997) Hot Melt Adhesives with Compatible Hydroxyl-Containing Ester Waxes. US Patent No. US5852080A.
[52]  Neigel, D., Sweeey, G.A., Altieri, P., Paul, C.W., Billmers, R.L. and Rawlins, D.C. (1994) Process for Production of Starch Based Hot Melt Adhesives. US Patent No. US5434201A.
[53]  Iovine, C.P., Kauffman, T.F., Schoenberg, J.E. and Puletti, P.P. (1993) Polylactide and Starch Containing Hot Melt Adhesive. US Patent No. US5312850A.
[54]  Swain, S., Biswal, S., Nanda, P. and Nayak, P. (2004) Biodegradable Soy-Based Plastics: Opportunities and Challenges. Journal of Polymers and the Environment, 12, 35-42.
https://doi.org/10.1023/B:JOOE.0000003126.14448.04
[55]  Zhong, Z. and Sun, X. (2001) Properties of Soy Protein Isolate/Polycaprolactone Blends Compatibilized by Methylene Diphenyl Diisocyanate. Polymer, 42, 6961-6969.
https://doi.org/10.1016/S0032-3861(01)00118-5
[56]  Abdus, S., Lucian, A.L. and Hasan, J. (2015) A New Class of Biobased Paper Dry Strength Agents: Synthesis and Characterization of Soy-Based Polymers. ACS Sustainable Chemistry & Engineering, 3, 524-532.
https://doi.org/10.1021/sc500764m
[57]  Cheng, H. N., Ford, C. V. and He, Z. (2019) Evaluation of Polyblends of Cottonseed Protein and Polycaprolactone Plasticized by Cottonseed Oil. International Journal of Polymer Analysis and Characterization, 24, 389-398.
https://doi.org/10.1080/1023666X.2019.1598641
[58]  Schmitz, J.F. (2009) Enzyme Modified Soy Flour Adhesives. Ph.D Thesis, Iowa State University, Ames, Iowa.
[59]  Zhu, R. (2011) Preparation of Maleic Anhydride Grafted Poly (Lactic Acid) (PLA) and Its Compatibilization Effect on PLA/SOY Protein Composite. M.S. Thesis, Washington State University, Pullman.
[60]  Vermeesch, I. and Groeninckx, G. (1994) Chemical Modification of Poly (Styrene-co-Maleic Anhydride) with Primary N-Alkylamines by Reactive Extrusion. Journal of Applied Polymer Science, 53, 1365-1373.
https://doi.org/10.1002/app.1994.070531011
[61]  Matzinos, P., Bikiaris, D., Kokkou, S. and Panayiotou, C. (2001) Processing and Characterization of LDPE/Starch Products. Journal of Applied Polymer Science, 79, 2548-2557.
https://doi.org/10.1002/1097-4628(20010401)79:14%3C2548::AID-APP1064%3E3.0.CO;2-3
[62]  Zhang, Z.H. and Hua, Y.F. (2007) Urea-Modified Soy Globulin Proteins (7S and 11S): Effect of Wettability and Secondary Structure on Adhesion. Journal of the American Oil Chemists’ Society, 84, 853-857.
https://doi.org/10.1007/s11746-007-1108-7
[63]  Ciannamea, E.M., Martucci, J.F., Stefani, P.M. and Ruseckaite, R.A. (2012) Bonding Quality of Chemically-Modified Soybean Protein Concentrate-Based Adhesives in Particleboards from Rice Husks. Journal of the American Oil Chemists’ Society, 89, 1733-1741.
https://doi.org/10.1007/s11746-012-2058-2
[64]  Ciannamea, E.M., Stefani, P.M. and Ruseckaite, R.A. (2014) Physical and Mechanical Properties of Compression Molded and Solution Casting Soybean Protein Concentrate Based Films. Food Hydrocolloids, 38, 193-204.
https://doi.org/10.1016/j.foodhyd.2013.12.013
[65]  Lu, Y., Weng, L. and Zhang, L. (2004) Morphology and Properties of Soy Protein Isolate Thermoplastics Reinforced with Chitin Whiskers. Biomacromolecules, 5, 1046-1051.
https://doi.org/10.1021/bm034516x
[66]  Södergård, A. and Näsman, J.H. (1994) Stabilization of Poly(L-Lactide) in the Melt. Polymer Degradation and Stability, 46, 25-30.
https://doi.org/10.1016/0141-3910(94)90104-X
[67]  Ching, C., Kaplan, D. and Thomas, E. (1993) Biodegradable Polymers and Packaging. Technomic Publishing Company, Lancaster, PA, pp. 1-9, 29, 97-110.
[68]  Hiljanen-Vainio, M., Karjalainen, T. and Seppala, J. (1996) Biodegradable Lactone Copolymers Characterization and Mechanical Behavior of ε-Caprolactone and Lactide Copolymers. Journal of Applied Polymer Science, 59, 1281-1288.
https://doi.org/10.1002/(SICI)1097-4628(19960222)59:8%3C1281::AID-APP11%3E3.0.CO;2-9
[69]  Fukuzaki, H., Yoshida, M., Asano, M., Kumakura, M., Mashimo, T., Yuasa, H. and Yamanaka, H. (1991) In Vivo Characteristics of High, Molecular Weight Copoly(L-Lactide/Glycolide) with S-Type Degradation Pattern for Application in Drug Delivery Systems. Biomaterials, 12, 433-437.
https://doi.org/10.1016/0142-9612(91)90014-2
[70]  Korin, C. (2009) Mechanical Behaviour of Adhesive Joints in Cartonboard for Packaging. Ph.D. Thesis, Karlstad University, Karlstad, Sweden.
[71]  Sodergard, A. (2010) Production of High Molecular Weight Polylactide on Industrial Scale. Ph.D. Thesis, Laboratory of Polymer Technology, Abo Akademi University, Turku, Finland.
[72]  Jamshidi, K., Hyon, S.H. and Ikada, Y. (1988) Thermal Characterization of Polylactides. Polymer, 29, 2229-2234.
https://doi.org/10.1016/0032-3861(88)90116-4
[73]  Viljanmaa, M., Södergård, A. and Törmälä, P. (2002) Adhesion Properties of Lactic Acid Based Hot Melt Adhesives and Their Storage Stability in Different Packaging Applications. International Journal of Adhesion and Adhesives, 22, 447-457.
https://doi.org/10.1016/S0143-7496(02)00027-1
[74]  Abba, F., Morel-Fourrier, C. and Sajot, N. (2005) Low Application Temperature Hot Melt Adhesive. US Patent No. US20070088116A1.
[75]  Chabert, F., Tournilhac, F., Sajot, N., Tence-Girault, S. and Leibler, L. (2010) Supramolecular Polymer for Enhancement of Adhesion and Processability of Hot Melt Polyamides. International Journal of Adhesion and Adhesives, 30, 696-705.
https://doi.org/10.1016/j.ijadhadh.2010.08.003
[76]  Peerman, D.E. and Vertnik, L.R. (1968) Polyamide Composition. US Patent No. 3377303, Assigned to General Mills.
[77]  Leoni, R., Gruber, W. and Wichelhaus, J. (1990) Adhesive Composition Comprising Thermoplastic Polyamide from Dimer Acid and N-Substituted Aliphatic Diamines. US Patent No. 4914162, Assigned to Henkel Kommanditgesellschaft Auf Aktien.
[78]  Urman, K., Iverson, D. and Otaigbe, J.U. (2006) Study of the Effects of Processing Conditions on the Structure and Properties of Phosphate Glass/Polyamide 12 Hybrid Materials. Journal of Applied Polymer Science, 105, 1297-1308.
https://doi.org/10.1002/app.25266
[79]  Kadam, P.G., Vaidya, P. and Mhaske, S. T. (2014) Synthesis and Characterization of Polyesteramide Hot Melt Adhesive from Low Purity Dimer Acid, Ethylenediamine, and Ethanolamine. Journal of Polymers, 2014, Article ID: 645832.
https://doi.org/10.1155/2014/645832
[80]  Wroczynski, R.J. (1989) Polyamide from Polymeric Fatty Acid and Long Chain Dicarboxylic Acid. US Patent No. 4882414, Assigned to Union Camp Corporation.
[81]  Lilga, M.A., Werpy, T.A. and Holladay, J.E. (2006) Methods of Forming Alpha, Beta-Unsaturated Acids and Esters. US Patent No. 6,992,209.
[82]  Zhang, X., Tu, M. and Paice, M.G. (2011) Routes to Potential Bioproducts from Lignocellulosic Biomass Lignin and Hemicelluloses. BioEnergy Research, 4, 246-257.

https://doi.org/10.1007/s12155-011-9147-1
[83]  Ke, T. and Sun, X.S. (2003) Thermal and Mechanical Properties of Poly(Lactic Acid)/Starch/Methylenediphenyl Diisocyanate Blending with Triethyl Citrate. Journal of Applied Polymer Science, 88, 2947-2955.
https://doi.org/10.1002/app.12112
[84]  Ke, T., Sun, S.X. and Seib, P. (2003) Blending of Poly(Lactic Acid) and Starches Containing Varying Amylose Content. Journal of Applied Polymer Science, 89, 3639-2646.
https://doi.org/10.1002/app.12617
[85]  Wang, H., Sun, X. and Seib, P. (2001) Strengthening Blends of Poly(Lactic Acid) and Starch with Methylenediphenyl Diisocyanate. Journal of Applied Polymer Science, 82, 1761-1767.
https://doi.org/10.1002/app.2018
[86]  Wang, H., Sun, X. and Seib, P. (2002) Mechanical Properties of Poly(Lactic Acid) and Wheat Starch Blends with Methylenediphenyl Diisocyanate, Journal of Applied Polymer Science, 84, 1257-1262.
https://doi.org/10.1002/app.10457
[87]  Ke, T. and Sun, X. (2001) Effects of Moisture Content and Heat Treatment on the Physical Properties of Starch and Poly(Lactic Acid) Blends. Journal of Applied Polymer Science, 81, 3069-3082.
https://doi.org/10.1002/app.1758
[88]  Wang, H., Sun, X. and Seib, P. (2003) Properties of Poly(Lactic Acid) Blends with Various Starches as Affected by Physical Aging. Journal of Applied Polymer Science, 90, 3683-3689.
https://doi.org/10.1002/app.13001
[89]  Huneault, M.A. and Li, H. (2007) Morphology and Properties of Compatibilized Polylactide/Thermoplastic Starch Blends. Polymer, 48, 270-280.
https://doi.org/10.1016/j.polymer.2006.11.023
[90]  Guan, J., Fang, Q. and Hanna, M.A. (2004) Functional Properties of Extruded Starch Acetate Blends. Journal of Polymers and the Environment, 12, 57-63.
https://doi.org/10.1023/B:JOOE.0000010051.46648.0e
[91]  Zhang, J.-F. and Sun, X. (2004) Physical Characterization of Coupled Poly(Lactic Acid)/Starch/Maleic Anhydride Blends Plasticized by Acetyl Triethyl Citrate. Macromolecular Bioscience, 4, 1053-1060.
https://doi.org/10.1002/mabi.200400076
[92]  Ke, T. and Sun, X. (2003) Melting Behavior and Crystallization Kinetics of Starch and Poly(Lactic Acid) Composites. Journal of Applied Polymer Science, 89, 1203-1210.
https://doi.org/10.1002/app.12162
[93]  Jun, C.L. (2000) Reactive Blending of Biodegradable Polymers: PLA and Starch. Journal of Polymers and the Environment, 8, 33-37.
https://doi.org/10.1023/A:1010172112118
[94]  Dubois, P. and Narayan, R. (2003) Biodegradable Compositions by Reactive Processing of Aliphatic Polyester/Polysaccharide Blends. Macromolecular Symposia, 198, 233-234.
https://doi.org/10.1002/masy.200350820
[95]  Zhang, J.F. and Sun, X. (2004) Mechanical Properties of Poly (Lactic Acid)/Starch Composites Compatibilized by Maleic Anhydride. Biomacromolecules, 5, 1446-1451.
https://doi.org/10.1021/bm0400022
[96]  Zhang, J.-F. and Sun, X. (2004) Mechanical and Thermal Properties of Poly(Lactic Acid)/Starch Blends with Dioctyl Maleate. Journal of Applied Polymer Science, 94, 1697-1704.
https://doi.org/10.1002/app.21078
[97]  Wang, H., Sun, X.Z. and Seib, P. (2002) Effects of Starch Moisture on Properties of Wheat Starch/Poly (Lactic Acid) Blend Containing Methylenediphenyl Diisocyanate. Journal of Polymers and the Environment, 10, 133-138.
https://doi.org/10.1023/A:1021139903549
[98]  Martin, O. and Avérous, L. (2001) Poly(Lactic Acid): Plasticization and Properties of Biodegradable Multiphase Systems. Polymer, 42, 6209-6219.
https://doi.org/10.1016/S0032-3861(01)00086-6
[99]  Wang, J.-X., Huang, Y.-B., & Yang, W.-T. (2019) Photo-Grafting Poly(Acrylic Acid) onto Poly(Lactic Acid) Chains in Solution. Chinese Journal of Polymer Science, 38, 137-142.
https://doi.org/10.1007/s10118-019-2308-y
[100]  Yew, G.H., Mohd Yusof, A.M., Mohd Ishak, Z.A. and Ishiaku, U.S. (2005) Water Absorption and Enzymatic Degradation of Poly(Lactic Acid)/Rice Starch Composites. Polymer Degradation and Stability, 90, 488-500.
https://doi.org/10.1016/j.polymdegradstab.2005.04.006
[101]  Ke, T. (2003) Starch, Poly (Lactic Acid), and Poly (Vinyl Alcohol) Blends. Journal of Polymers and the Environment, 11, 7-14.
[102]  Jacobsen, S. and Fritz, H.G. (1996) Filling of Poly (Lactic Acid) with Native Starch. Polymer Engineering & Science, 36, 2799-2804.
https://doi.org/10.1002/pen.10680

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133