全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Markers for Global Climate Change and Its Impact on Social, Biological and Ecological Systems: A Review

DOI: 10.4236/ajcc.2020.93012, PP. 159-203

Keywords: Global Climate Change, Biodiversity Loss, Loss of Life, Habitat, Economic Losses, Biomarkers, Challenges and Solutions

Full-Text   Cite this paper   Add to My Lib

Abstract:

Present article sketches out major climate induced changes in marine, aquatic and terrestrial life. Few important biomarkers such as ecological, meteorological, socioeconomic, thermal, biophysical and biological, behavioral markers of climate change and global environmental stress have been highlighted to predict the future challenges and finding appropriate solutions. Though, so many climate change induced effects are visible but few unpredictable effects may be seen in future. Therefore, all such effects have been acknowledged, and tried to find appropriate solutions. Most visible effect is collection of high amounts of carbon dioxide in the atmosphere which is responsible for green house effect and causing natural calamities round the globe. It is not only jeopardized the survival of terrestrial, fresh water animals mainly planktons, bottom dwellers; coral reefs, algae, fish fauna in marine environment belong to different taxon but also responsible for disruption of ocean’s food web due to non-assimilation of extra carbon dioxide by the ocean water. There is a sharp decline in fresh water and sea shore micro-flora and micro-fauna. Other major visible effects are loss of biodiversity, depletion of forests, land degradation, severe floods and draughts. On other hand sudden changes in weather conditions causing irreparable devastations due to hurricanes and typhoons, storms, lightening, earthquakes and tsunamis are normally on rise. Both economic and ecological breakdowns are occurring more frequently which are more impactful and persistent. Climate change is major human health stressor; it is making fragmentation of socio-cultural bonds and reducing fertility of soil finally crop production. Climate change is imposing non-adaptive forced human migration, territorial conflicts, decreasing ecosystem productivity, disease out breaks, and impelling unequal resource utilization.

References

[1]  (2009). Agriculture & Climate Change—Draft 21.
[2]  (2018). Deforestation and Climate Change. Greenpeace.
[3]  Adger, W. N. (2006). Vulnerability. Global Environmental Change, 16, 268-281.
https://doi.org/10.1016/j.gloenvcha.2006.02.006
[4]  Ainsworth, E. A., & Long, S. P. (2005). What Have We Learned from 15 Years of Free-Air CO2 Enrichment (FACE)? A Meta-Analysis of the Responses of Photosynthesis, Canopy Properties and Plant Production to Rising CO2. New Phytologist, 165, 351-372.
https://doi.org/10.1111/j.1469-8137.2004.01224.x
[5]  Amininasab, S. M., Kingma, S. A., Birker, M., Hildenbrandt, H., & Komdeur, J. (2016). The Effect of Ambient Temperature, Habitat Quality and Individual Age on Incubation Behaviour and Incubation Feeding in a Socially Monogamous Songbird. Behavioral Ecology and Sociobiology, 70, 1591-1600.
https://doi.org/10.1007/s00265-016-2167-2
[6]  Anup (2019). Loss of Biodiversity and Extinctions. Global Issues.
[7]  Bajracharya, Mool, & Shrestha (2009). Glaciers, Glacial Lakes and Glacial Lake Outburst Floods in the Mount Everest Region, Nepal. Annals of Glaciology, 50, 81-86.
https://doi.org/10.3189/172756410790595895
[8]  Barth, C., Villringer, A., & Sacher, J. (2015). Sex Hormones Affect Neurotransmitters and Shape the Adult Female Brain during Hormonal Transition Periods. Frontiers in Neuroscience, 9, 37.
https://doi.org/10.3389/fnins.2015.00037
[9]  Bässler, C., Müller, J., Hothorn, T., Kneib, T., Badeck, F., & Dziock, F. (2010). Estimation of the Extinction Risk for High-Montane Species as a Consequence of Global Warming and Assessment of Their Suitability as Cross-Taxon Indicators. Ecological Indicators, 10, 341-352.
https://doi.org/10.1016/j.ecolind.2009.06.014
[10]  Bates, B. C., Kundzewicz, Z. W., Wu, S., & Palutikof, J. P. (2008). Climate Change and Water (210 p.). Geneva: Technical Paper of the Intergovernmental Panel on Climate Change, IPCC Secretariat.
[11]  Ben-Aroya, S., Coombes, C., Kwok, T., O’Donnell, K. A., Boeke, J. D., & Hieter, P. (2008). Toward a Comprehensive Temperature-Sensitive Mutant Repository of the Essential Genes of Saccharomyces cerevisiae. Molecular Cell, 30, 248-258.
https://doi.org/10.1016/j.molcel.2008.02.021
[12]  Bernard, B., Mandiki, S. N. M., Duchatel, V., Rollin, X., & Kestemont, P. (2019). A Temperature Shift on the Migratory Route Similarly Impairs Hypo-Osmoregulatory Capacities in Two Strains of Atlantic Salmon (Salmo salar L.) Smolts. Fish Physiology and Biochemistry, 45, 1245-1260.
https://doi.org/10.1007/s10695-019-00666-x
[13]  Bernard, B., Sobandi, K. C., Darras, V., Rollin, X., Mandiki, S. N. M., & Kestemont, P. (2018). Influence of Strain Origin on Osmoregulatory and Endocrine Parameters of Two Non-Native Strains of Atlantic Salmon (Salmo salar L.). General and Comparative Endocrinology, 258, 205-212.
https://doi.org/10.1016/j.ygcen.2018.01.004
[14]  Both, C., Bouwhuis, S., Lessells, C. M., & Visser, M. E. (2006). Climate Change and Population Declines in a Long-Distance Migratory Bird. Nature, 441, 81-83.
https://doi.org/10.1038/nature04539
[15]  Botnevik, C. F., Malagocka, J., Jensen, A. B., & Fredensborg, B. L. (2016). Relative Effects of Temperature, Light, and Humidity on Clinging Behavior of Metacercariae-Infected Ants. Journal of Parasitology, 102, 495-500.
https://doi.org/10.1645/16-53
[16]  Breman, H. (1992). Resource Availability and Tropical Ecosystems. Biotropica OTS Silver Anniversary Symposium. Part B. Special Issue, 24, 328-334.
https://doi.org/10.2307/2388526
[17]  Brommer, J. E. (2004). The Range Margins of Northern Birds Shift Polewards. Annales Zoologici Fennici, 41, 391-397.
[18]  Butchart, S. H. M., Walpole, M., Collen, B., van Strien, A., Scharlemann, J. P. W., Almond, R. E. A. et al. (2010). Global Biodiversity: Indicators of Recent Declines. Science, 328, 1164-1168.
https://doi.org/10.1126/science.1187512
[19]  Caissie, D. (2006). The Thermal Regime of Rivers: A Review. Freshwater Biology, 51, 1389-1406.
https://doi.org/10.1111/j.1365-2427.2006.01597.x
[20]  Cardinale, B. (2014). Overlooked Local Biodiversity Loss (Letter and Response). Science, 344, 1098.
https://doi.org/10.1126/science.344.6188.1098-a
[21]  Cardinale, B., Duffy, E. J., Duffy, E., Gonzalex, A., Hoper, D. U., Perrings, C. et al. (2012). Biodiversity Loss and Its Impact on Humanity (PDF). Nature, 486, 59-67.
https://doi.org/10.1038/nature11148
[22]  Carpenter, K. E., Abrar, M., Aeby, G., Aronson, R. B., Banks, S., Bruckner, A., Chiriboga, A., Cortés, J. et al. (2008). One-Third of Reef-Building Corals Face Elevated Extinction Risk from Climate Change and Local Impacts. Science, 321, 560-563.
https://doi.org/10.1126/science.1159196
[23]  Celec, P., Smreková, L., Ostatníková, D., Cabajová, Z., Hodosy, J., & Kúdela, M. (2009). Lack of Evidence for Meteorological Effects on Infradian Dynamics of Testosterone. International Journal of Biometeorology, 53, 409-413.
https://doi.org/10.1007/s00484-009-0225-4
[24]  Chadwick, J. G., & McCormick, S. D. (2017). Upper Thermal Limits of Growth in Brook Trout and Their Relationship to Stress Physiology. Journal of Experimental Biology, 220, 3976-3987.
https://doi.org/10.1242/jeb.161224
[25]  Chan, A. W., Hon, K. L., Leung, T. F., Ho, M. H., Rosa Duque, J. S., & Lee, T. H. (2018). The Effects of Global Warming on Allergic Diseases. Hong Kong Medical Journal, 24, 277-284.
https://doi.org/10.12809/hkmj177046
[26]  Chang, H. H., Cohen, T., Grad, Y. H., Hanage, W. P., O’Brien, T. F., & Lipsitch, M. (2015). Origin and Proliferation of Multiple-Drug Resistance in Bacterial Pathogens. Microbiology and Molecular Biology Reviews, 79, 101-116.
https://doi.org/10.1128/MMBR.00039-14
[27]  Chapperon, C., Studerus, K., & Clavier, J. (2017). Mitigating Thermal Effect of Behaviour and Microhabitat on the Intertidal Snail Littorina saxatilis (Olivi) over Summer. Journal of Thermal Biology, 67, 40-48.
https://doi.org/10.1016/j.jtherbio.2017.03.017
[28]  Chen, H., Zhang, W. C., Gao, H. R., & Nie, N. (2018). Climate Change and Anthropogenic Impacts on Wetland and Agriculture in the Songnen and Sanjiang Plain, Northeast China. Remote Sensing, 10, 356.
https://doi.org/10.3390/rs10030356
[29]  Chown, S. L., Hoffmann, A. A., Kristensen, T. N., Angilletta Jr., M. J., Stenseth, N. C., & Pertoldi, C. (2010). Adapting to Climate Change: A Perspective from Evolutionary Physiology. Climate Research, 43, 3-15.
https://doi.org/10.3354/cr00879
[30]  Christensen, E. A., Svendsen, M. B., & Steffensen, J. F. (2017). Plasma Osmolality and Oxygen Consumption of Perch Perca fluviatilis in Response to Different Salinities and Temperatures. Journal of Fish Biology, 90, 819-833.
https://doi.org/10.1111/jfb.13200
[31]  Cochrane, M. A., & Schulze, M. D. (1999). Fire as a Recurrent Event in Tropical Forests of the Eastern Amazon: Effects on Forest Structure, Biomass, and Species Composition. Biotropica, 31, 2-16.
https://doi.org/10.1111/j.1744-7429.1999.tb00112.x
[32]  Coe, B. H., Beck, M. L., Chin, S. Y., Jachowski, C. M. B., & Hopkins, W. A. (2015). Local Variation in Weather Conditions Influences Incubation Behavior and Temperature in a Passerine Bird. Journal of Avian Biology, 46, 385-394.
https://doi.org/10.1111/jav.00581
[33]  Colfer, C. J. P., Sheil, D., & Kishi, M. (2006). Forests and Human Health: Assessing the Evidence. CIFOR Occasional Paper No. 45, Bogor: CIFOR.
[34]  Cowan, M., Azpeleta, C., & López-Olmeda, J. F. (2017). Rhythms in the Endocrine System of Fish: A Review. Journal of Comparative Physiology B, 187, 1057-1089.
https://doi.org/10.1007/s00360-017-1094-5
[35]  CSCDGC Center for the Study of Carbon Dioxide and Global Change (2002). Plant Growth Data.
http://www.co2science.org./data/plant_growth /plantgrowth.php
[36]  Cunningham, G. D., Fitzpatrick, L. J., While, G. M., & Wapstra, E. (2018). Plastic Rates of Development and the Effect of Thermal Extremes on Offspring Fitness in a Cold-Climate Viviparous Lizard. Journal of Experimental Zoology. Part A, Ecological and Integrative Physiology, 329, 262-270.
https://doi.org/10.1002/jez.2167
[37]  Daugaard, U., Petchey, O. L., & Pennekamp, F. (2019). Warming Can Destabilize Predator-Prey Interactions by Shifting the Functional Response from Type III to Type II. Journal of Animal Ecology, 88, 1575-1586.
https://doi.org/10.1111/1365-2656.13053
[38]  Davies, S. J., McGeoch, M. A., & Clusella-Trullas, S. (2015). Plasticity of Thermal Tolerance and Metabolism but Not Water Loss in an Invasive Reed Frog. Comparative Biochemistry and Physiology—Part A: Molecular & Integrative Physiology, 189, 11-20.
https://doi.org/10.1016/j.cbpa.2015.06.033
[39]  De Cochrane, M. A., & Laurance, W. F. (2002). Fire as a Large-Scale Edge Effect in Amazonian Forests. Journal of Tropical Ecology, 18, 311-325.
https://doi.org/10.1017/S0266467402002237
[40]  de Leew, J., Waweru, M. N., Okello, O. O., Maloba, M., Nguru, P., Said, M. Y., Aligula, H. M., Heitkonig, I. M. A., & Reid, R. S. (2001). Distribution and Diversity of Wildlife in Northern Kenya in Relation to Livestock and Permanent Water Points. Biological Conservation, 100, 297-306.
https://doi.org/10.1016/S0006-3207(01)00034-9
[41]  Denny, M. W. (2018). Survival in Spatially Variable Thermal Environments: Consequences of Induced Thermal Defense. Integrative Zoology, 13, 392-410.
https://doi.org/10.1111/1749-4877.12308
[42]  Dervo, B. K., Bærum, K. M., Skurdal, J., & Museth, J. (2016). Effects of Temperature and Precipitation on Breeding Migrations of Amphibian Species in Southeastern Norway. Scientifica, 2016, Article ID: 3174316.
https://doi.org/10.1155/2016/3174316
[43]  Dube, S. K., Chittibabu, P., Rao, A. D., Sinha, P. C., & Murty, T. S. (2000). Sea Levels and Coastal Inundation Due to Tropical Cyclones in Indian Coastal Regions of Andhra and Orissa. Marine Geodesy, 23, 65-73.
https://doi.org/10.1080/01490410050030643
[44]  Ducommun, P., Ruffieux, P., Kadouri, A., von Stockar, U., & Marison, I. W. (2002). Monitoring of Temperature Effects on Animal Cell Metabolism in a Packed Bed Process. Biotechnology and Bioengineering, 77, 838-842.
https://doi.org/10.1002/bit.10185
[45]  Dudgeon, D., Arthington, A. H., Gessner, M. O., Kawabata, Z.-I. et al. (2006). Freshwater Biodiversity: Importance, Threats, Status and Conservation Challenges. Biological Reviews, 81, 163-182.
https://doi.org/10.1017/S1464793105006950
[46]  DuRant, S. E., Hopkins, W. A., Carter, A. W., Stachowiak, C. M., & Hepp, G. R. (2013). Incubation Conditions Are More Important in Determining Early Thermoregulatory Ability than Posthatch Resource Conditions in a Precocial Bird Physiological and Biochemical Zoology. Ecological and Evolutionary Approaches, 86, 410-420.
https://doi.org/10.1086/671128
[47]  Edgar, & Lielausis (1964). Temperature-Sensitive Mutants of Bacteriophage T4d: Their Isolation and Genetic Characterization. Genetics, 49, 649-662.
[48]  Edwards, M., & Richardson, A. (2004). Impact of Climate Changes on Marine Pelagic Phenology and Trophic Mismatch. Nature, 430, 881-884.
https://doi.org/10.1038/nature02808
[49]  Ehleringer, J. R., Cerling, T. E., & Dearing, M. D. (2002). Atmospheric CO2 as a Global Change Driver Influencing Plant-Animal Interactions. Integrative and Comparative Biology, 42, 424-430.
https://doi.org/10.1093/icb/42.3.424
[50]  Eliasch, J. (2008). Climate Change: Financing Global Forests. The Eliasch Review. London: Earthscan.
[51]  Epstein, P. (2002). Climate Change and Infectious Disease: Stormy Weather Ahead? Epidemiology, 13, 373-375.
https://doi.org/10.1097/00001648-200207000-00001
[52]  Esposito, G., Truzzi, A., Setoh, P., Putnick, D. L., Shinohara, K., & Bornstein, M. H. (2017). Genetic Predispositions and Parental Bonding Interact to Shape Adults’ Physiological Responses to Social Distress. Behavioural Brain Research, 325, 156-162.
https://doi.org/10.1016/j.bbr.2016.06.042
[53]  Evan, H., DeLucia, P. D., Nabity, J. A. et al. (2012). Climate Change: Resetting Plant-Insect Interactions. Plant Physiology, 160, 1677-1685.
https://doi.org/10.1104/pp.112.204750
[54]  Fell, S. C., Carrivick, J. L., & Brown, L. E. (2017). The Multitrophic Effects of Climate Change and Glacier Retreat in Mountain Rivers. BioScience, 67, 897-911.
https://doi.org/10.1093/biosci/bix107
[55]  Fieber, L. A. (2019). Neurotransmitters and Neuropeptides of Invertebrates. In J. H. Byrne (Ed.), The Oxford Handbook of Invertebrate Neurobiology (pp. 285-301). Oxford: Oxford University Press.
[56]  Galatowitsch, S., Frelich, L., & Phillips-Mao, L. (2009). Regional Climate Change Adaptation Strategies for Biodiversity Conservation in a Midcontinental Region of North America. Biological Conservation, 142, 2012-2022.
https://doi.org/10.1016/j.biocon.2009.03.030
[57]  Gandiwa, E., & Kativu, S. (2009). Influence of Fire Frequency on Colophospermum mopane and Combretum apiculatum Woodland Structure and Composition in Northern Gonarezhou National Park, Zimbabwe. Koedoe, 51, Art. 685.
https://doi.org/10.4102/koedoe.v51i1.685
[58]  Gandiwa, E., & Zisadza, P. (2010). Wildlife Management in Gonarezhou National Park, Southeast Zimbabwe: Climate Change and Implications for Management. Nature and Faune, 25, 95-104.
[59]  GBD 2015 Risk Factors Collaborators (2015). Global, Regional, and National Comparative Risk Assessment of 79 Behavioral, Environmental and Occupational, and Metabolic Risks or Clusters of Risks, 1990-2015: A Systematic Analysis for the Global Burden of Disease Study 2015. The Lancet, 388, 1659-1724.
[60]  Geist, H. J., & Lambin, E. F. (2004). Dynamic Causal Patterns of Desertification. BioScience, 54, 817-829.
https://doi.org/10.1641/0006-3568(2004)054[0817:DCPOD]2.0.CO;2
[61]  Glantz, M. (1991). The Use of Analogies in Forecasting Ecological and Societal Responses to Global Warming. Environment, 33, 10-33.
https://doi.org/10.1080/00139157.1991.9931393
[62]  Gonzalez, A., Cardinale, B., Allington, G. R. H., Byrnes, J., Arthur Endsley, K., Brown, D. G., Hooper, D. U., Isbell, F., O’Connor, M. I., & Loreau, M. (2016). Estimating Local Biodiversity Change: A Critique of Papers Claiming No Net Loss of Local Diversity. Ecology, 97, 1949-1960.
https://doi.org/10.1890/15-1759.1
[63]  Gottfried, M., Pauli, H., Reiter, K., & Grabherr, G. (1999). A Fine Scaled Predictive Model for Changes in Species Distribution Patterns of High Mountain Plants Induced by Climate Warming. Diversity and Distributions, 5, 241-251.
https://doi.org/10.1046/j.1472-4642.1999.00058.x
[64]  Graham, R. S., & Johnston, I. A. (2012). Temperature during Embryonic Development Has Persistent Effects on Thermal Acclimation Capacity in Zebrafish. PNAS, 109, 14247-14252.
https://doi.org/10.1073/pnas.1205012109
[65]  Grime, J. P., Fridley, J. D., Askew, A. P., Thompson, K., Hodgson, J. G., & Bennett, C. R. (2008). Long-Term Resistance to Simulated Climate Change in an Infertile Grassland. PNAS, 105, 10028-10032.
https://doi.org/10.1073/pnas.0711567105
[66]  Gutmann, M., & Field, V. (2010). Katrina in Historical Context: Environment and Migration in the US. Population and Environment, 31, 3-19.
https://doi.org/10.1007/s11111-009-0088-y
[67]  Haeberli, W., & Ambio, M. B. (1998). Climate Change and Its Impacts on Glaciers and Permafrost in the Alps. Ambio, 27, 258-265.
[68]  Hallmann, C. A., Sorg, M., Jongejans, E., Siepel, H., Hofland, N., Schwan, H., Stenmans, W., Müller, A., Sumser, H., Hörren, T., Goulson, D., & de Kroon, H. (2017). More than 75 Percent Decline over 27 Years in Total Flying Insect Biomass in Protected Areas. PLoS ONE, 12, e0185809.
https://doi.org/10.1371/journal.pone.0185809
[69]  Hanson, C. E. (2007). Impacts, Adaptation and Vulnerability Working Group II Contribution to the Intergovernmental Panel on Climate Change Fourth Assessment Report.
[70]  Hartman, J. L., Garvik, B., & Hartwell, L. (2001). Principles for the Buffering of Genetic Variation. Science, 291, 1001-1004.
https://doi.org/10.1126/science.291.5506.1001
[71]  Hartwell, L. H., Mortimer, R. K., Culotti, J., & Culotti, M. (1973). Genetic Control of the Cell Division Cycle in Yeast: V. Genetic Analysis of cdc Mutants, 1967. Genetics, 74, 267-286.
[72]  Hays, G. C., Richardson, A. J., & Robinson, C. (2005). Climate Change and Marine Plankton. Trends in Ecology & Evolution, 20, 337-344.
https://doi.org/10.1016/j.tree.2005.03.004
[73]  Helmer, M., & Hilhorst, D. (2006). Natural Disasters and Climate Change. Disasters, 30, 1-4.
https://doi.org/10.1111/j.1467-9523.2006.00302.x
[74]  Hemp, S. (2009). Climate Change and Its Impact on the Forests of Kilimanjaro. Journal Compilation, 47, 3-10.
https://doi.org/10.1111/j.1365-2028.2008.01043.x
[75]  Hinzman, L. D., Bettez, N. D., Bolton, W. R. et al. (2005). Evidence and Implications of Recent Climate Change in Northern Alaska and Other Arctic Regions. Climatic Change, 72, 251-298.
[76]  Holzknecht, B. J., Hardardottir, H., Haraldsson, G., Westh, H., Valsdottir, F., Boye, K., Karlsson, S., Kristinsson, G., & Gudlaugsson, O. (2010). Changing Epidemiology of Methicillin-Resistant Staphylococcus aureus in Iceland from 2000 to 2008: A Challenge to Current Guidelines. Journal of Clinical Microbiology, 48, 4221.
https://doi.org/10.1128/JCM.01382-10
[77]  Hughes, T. R. (2002). Yeast and Drug Discovery. Functional & Integrative Genomics, 2, 199-211.
https://doi.org/10.1007/s10142-002-0059-1
[78]  Hulme, M., Barrow, E. M., Arnell, N. W., Harrison, P. A., Johns, T. C., & Downing, T. A. (1999). Relative Impacts of Human-Induced Climate Change and Natural Climate Variability. Nature, 397, 688-691.
https://doi.org/10.1038/17789
[79]  Human Development Reports (2011). Sustainability and Equity: A Better Future for All. United Nations Development Programme (UNDP), 1-185.
http://hdr.undp.org
[80]  Hunter, L. M. (2005). Migration and Environmental Hazards. Population and Environment, 26, 273-302.
https://doi.org/10.1007/s11111-005-3343-x
[81]  Intergovernmental Panel on Climate Change (IPCC) (1992). The Supplementary Report to the IPCC Scientific Assessment. Cambridge: Cambridge University Press.
[82]  International Food Policy Research Institute (2017). Global Nutrition Report 2014: Actions and Accountability to Advance Nutrition and Sustainable Development.
https://doi.org/10.2499/9780896298835
[83]  IPCC (2019). Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems.
[84]  IPCC (Intergovernmental Panel on Climatic Change) (2006). The Economics of Climate Change: Stern Review. The Summary of Conclusions. Survey of the Environment 2007, the Hindu (pp. 141-145).
[85]  IUCN/SSC Primate Specialist Group (2008). Endemic Species with Strict Ecological Constraints Are Likely to Be Most Affected.
[86]  Jacobsen, D., Milner, A. M., Brown, L. E., & Dangles, O. (2012). Biodiversity under Threat in Glacier-Fed River Systems. Nature Climate Change, 2, 361-364.
https://doi.org/10.1038/nclimate1435
[87]  Jeffries, K. M., Fangue, N. A., & Connon, R. E. (2018). Multiple Sub-Lethal Thresholds for Cellular Responses to Thermal Stressors in an Estuarine Fish. Comparative Biochemistry and Physiology—Part A: Molecular & Integrative Physiology, 225, 33-45.
https://doi.org/10.1016/j.cbpa.2018.06.020
[88]  Jeong, H., Mason, S. P., Barabási, A. L., & Oltvai, Z. N. (2001). Lethality and Centrality in Protein Networks. Nature, 411, 41-42.
https://doi.org/10.1038/35075138
[89]  Jiao, S., Chen, W. M., & Wei, G. H. (2019). Resilience and Assemblage of Soil Microbiome in Response to Chemical Contamination Combined with Plant Growth. Applied and Environmental Microbiology, 85, e02523-18.
https://doi.org/10.1128/AEM.02523-18
[90]  Jiao, S., Xu, Y., Zhang, J., Hao, X., & Lu, Y. (2019). Core Microbiota in Agricultural Soils and Their Potential Associations with Nutrient Cycling. mSystems, 4, e00313-18.
https://doi.org/10.1128/mSystems.00313-18
[91]  Jourdan, J., Baranov, V., Wagner, R., Plath, M., & Haase, P. (2019). Elevated Temperatures Translate into Reduced Dispersal Abilities in a Natural Population of an Aquatic Insect. Journal of Animal Ecology, 88, 1498-1509.
https://doi.org/10.1111/1365-2656.13054
[92]  Kaushal, S. S., Likens, G. E., Jaworski, N. A., Pace, M. L., Sides, A. M., Seekell, D., Belt, K. T., Secor, D. H., & Wingate, R. L. (2010). Rising Stream and River Temperatures in the United States. Frontiers in Ecology and the Environment, 8, 461-466.
https://doi.org/10.1890/090037
[93]  Kehrberger, S., Holzschuh, A., Kehrberger, S., & Holzschuh, A. (2019). Warmer Temperatures Advance Flowering in a Spring Plant More Strongly than Emergence of Two Solitary Spring Bee Species. PLoS ONE, 14, e0218824.
https://doi.org/10.1371/journal.pone.0218824
[94]  Kim, J., & Kim, H. (2017). Influence of Ambient Temperature and Diurnal Temperature Range on Incidence of Cardiac Arrhythmias. International Journal of Biometeorology, 61, 407-416.
https://doi.org/10.1007/s00484-016-1221-0
[95]  Kucharczyk, D., Luczynski, M., Kujawa, R. et al. (1997). Effect of Temperature on Embryonic and Larval Development of Bream (Abramis brama L.). Aquatic Science, 59, 214-224.
https://doi.org/10.1007/BF02523274
[96]  Lammertyn, J., Franck, C., Verlinden, B. E., & Nicolaï, B. M. (2001). Comparative Study of the O2, CO2 and Temperature Effect on Respiration between “Conference” Pear Cell Protoplasts in Suspension and Intact Pears. Journal of Experimental Botany, 52, 1769-1777.
https://doi.org/10.1093/jexbot/52.362.1769
[97]  Landsea, C. (2007). Subject: D3—Why Do Tropical Cyclones’ Winds Rotate Counter-Clockwise (Clockwise) in the Northern (Southern) Hemisphere? National Hurricane Center.
[98]  Lauchlan, S. S., Burckard, G., Cassey, P., & Nagelkerken, I. (2019). Climate Change Erodes Competitive Hierarchies among Native, Alien and Range-Extending Crabs. Marine Environmental Research, 151, Article ID: 104777.
https://doi.org/10.1016/j.marenvres.2019.104777
[99]  Lim, S. S., Vos, T., Flaxman, A. D. et al. (2012). A Comparative Risk Assessment of Burden of Disease and Injury Attributable to 67 Risk Factors and Risk Factor Clusters in 21 Regions, 1990-2010: A Systematic Analysis for the Global Burden of Disease Study 2010. The Lancet, 380, 2224-2260.
[100]  Liu, C., Yavar, Z., & Sun, Q. (2015). Cardiovascular Response to Thermoregulatory Challenges. American Journal of Physiology: Heart and Circulatory Physiology, 309, H1793-H1812.
https://doi.org/10.1152/ajpheart.00199.2015
[101]  Lunde, T. M., & Lindtjørn, B. (2013). Cattle and Climate in Africa: How Climate Variability Has Influenced National Cattle Holdings from 1961-2008. Peer J, 1, e55.
https://doi.org/10.7717/peerj.55
[102]  Magnoni, L. J., Eding, E., Leguen, I., Prunet, P., Geurden, I., Ozório, R. O. A., & Schrama, J. W. (2018). Hypoxia, But Not an Electrolyte-Imbalanced Diet, Reduces Feed Intake, Growth and Oxygen Consumption in Rainbow Trout (Oncorhynchus mykiss). Scientific Reports, 8, Article No. 4965.
https://doi.org/10.1038/s41598-018-23352-z
[103]  Malhi, Y., Roberts, J. T., Betts, R. A., Killeen, T. J., Li, W., & Nobre, C. A. (2008). Climate Change, Deforestation, and the Fate of the Amazon. Science, 319, 169-172.
https://doi.org/10.1126/science.1146961
[104]  Masroor, W., Farcy, E., Gros, R., & Lorin-Nebel, C. (2018). Effect of Combined Stress (Salinity and Temperature) in European Sea Bass Dicentrarchus labrax Osmoregulatory Processes. Comparative Biochemistry and Physiology—Part A: Molecular & Integrative Physiology, 215, 45-54.
https://doi.org/10.1016/j.cbpa.2017.10.019
[105]  Matysioková, B., & Remeš, V. (2018). Evolution of Parental Activity at the Nest Is Shaped by the Risk of Nest Predation and Ambient Temperature across Bird Species. Evolution, 72, 2214-2224.
https://doi.org/10.1111/evo.13580
[106]  McCain, C. M., & Colwell, R. K. (2011). Assessing the Threat to Montane Biodiversity from Discordant Shifts in Temperature and Precipitation in a Changing Climate. Ecology Letters, 14, 1236-1245.
https://doi.org/10.1111/j.1461-0248.2011.01695.x
[107]  McEwan, G. F., Groner, M. L., Cohen, A. A. B., Imsland, A. K. D., & Revie, C. W. (2019). Modelling Sea Lice Control by Lumpfish on Atlantic Salmon Farms: Interactions with Mate Limitation, Temperature and Treatment Rules. Diseases of Aquatic Organisms, 133, 69-82.
https://doi.org/10.3354/dao03329
[108]  McGeoch, M. A., Butchart, S. H. M., Spear, D., Marais, E., Kleynhans, E. J., Symes, A., Chanson, J., & Hoffmann, M. (2010). Global Indicators of Biological Invasion: Species Numbers, Biodiversity Impact and Policy Responses. Diversity and Distributions, 16, 95-108.
https://doi.org/10.1111/j.1472-4642.2009.00633.x
[109]  McLeman, R. A., & Smit, B. (2006). Migration as an Adaptation to Climate Change. Climatic Change, 76, 31-53.
https://doi.org/10.1007/s10584-005-9000-7
[110]  Meze-Hausken, E. (2000). Migration Caused by Climate Change: How Vulnerable Are People in Dryland Areas? Mitigation Adaptation Strategies Global Change, 5, 379-406.
https://doi.org/10.1023/A:1026570529614
[111]  Mohammadi, R., Soori, H., Alipour, A., Bitaraf, E., & Khodakarim, S. (2018). The Impact of Ambient Temperature on Acute Myocardial Infarction Admissions, in Tehran, Iran. Journal of Thermal Biology, 73, 24-31.
https://doi.org/10.1016/j.jtherbio.2018.02.008
[112]  Mormede, P., & Terenina, E. (2012). Molecular Genetics of the Adrenocortical Axis and Breeding for Robustness. Domestic Animal Endocrinology, 43, 116-131.
https://doi.org/10.1016/j.domaniend.2012.05.002
[113]  Mueller, A. J., Miller, D., & Bowers, E. K. (2019). Nest Microclimate during Incubation Affects Posthatching Development and Parental Care in Wild Birds. Scientific Reports, 9, Article No. 5161.
https://doi.org/10.1038/s41598-019-41690-4
[114]  Munich Climate-Insurance Initiative (2013). Climate Change and Rising Weather Related Disasters.
[115]  Nelson, G. C., Bennett, E., Berhe, A. A., Cassman, K., DeFries, R., Dietz, T., Dobermann, A., Dobson, A., Janetos, A., Levy, M., Marco, D., Nakicenovic, N., O’Neill, B., Norgaard, R., Petschel-Held, G., Ojima, D., Pingali, P., Watson, R., & Zurek, M. (2006). Anthropogenic Drivers of Ecosystem Change: An Overview. Ecology and Society, 11, 29.
https://doi.org/10.5751/ES-01826-110229
[116]  Nishizaki, M. T., & Carrington, E. (2015). The Effect of Water Temperature and Velocity on Barnacle Growth: Quantifying the Impact of Multiple Environmental Stressors. Journal of Thermal Biology, 54, 37-46.
https://doi.org/10.1016/j.jtherbio.2015.02.002
[117]  North American Bird Conservation Initiative and US Committee (2010).
[118]  Öberg, M., Arlt, D., Pärt, T., Laugen, A. T., Eggers, S., & Low, M. (2015). Rainfall during Parental Care Reduces Reproductive and Survival Components of Fitness in a Passerine Bird. Ecology and Evolution, 5, 345-356.
https://doi.org/10.1002/ece3.1345
[119]  Ott, J. (2010). The Big Trek Northwards: Recent Changes in the European Dragonfly Fauna. In J. Settele, L. Penev, T. Georgiev, R. Grabaum, V. Grobelnik, V. Hammen, S. Klotz, M. Kotarac, & I. Kühn (Eds.), Atlas of Biodiversity Risk (p. 280). Sofia: Pensoft.
[120]  Parry, M. L., Canziani, O. F., Palutikof, J. P., & Parry, M. L. (2007a). Climate Change 2007: Impacts, Adaptation and Vulnerability.
[121]  Parry, M. L., Canziani, O. F., Palutikof, J. P., van der Linden, P. J., & Hanson, C. E. (2007b). Human Health Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 391-431). Cambridge: Cambridge University Press.
[122]  Pauli, H., Gottfried, M., Hohenwallner, D., Reiter, K., & Grabherr, G. (2005). Ecological Climate Impact Research in High Mountain Environments: GLORIA (Global Observation Research Initiative in Alpine Environments) Its Roots, Purpose and Long-Term Perspectives. In U. M. Huber, H. K. M. Bugmann, & M. A. Reasoner (Eds.), Global Change and Mountain Regions (pp. 383-391). Advances in Global Change Research Vol. 23, Dordrecht: Springer.
https://doi.org/10.1007/1-4020-3508-X_38
[123]  Peel, M. C., Finlayson, B. L., & McMahon, T. A. (2007). Updated World Map of the Köppen-Geiger Climate Classification. Hydrology and Earth System Sciences, 11, 1633-1644.
https://doi.org/10.5194/hess-11-1633-2007
[124]  Pennisi, E. (2019). Common Pesticide Makes Migrating Birds Anorexic. Science.
https://doi.org/10.1126/science.aaz4736
[125]  Pepi, A., Grof-Tisza, P., Holyoak, M., & Karban, R. (2018). As Temperature Increases, Predator Attack Rate Is More Important to Survival than a Smaller Window of Prey Vulnerability. Ecology, 99, 1584-1590.
https://doi.org/10.1002/ecy.2356
[126]  Perch-Nielsen, S., Bättig, M., & Imboden, D. (2008). Exploring the Link between Climate Change and Migration. Climatic Change, 91, 375-393.
https://doi.org/10.1007/s10584-008-9416-y
[127]  Poff, N. L., Allan, J. D., Bain, M. B., Karr, J. R., Prestegaard, K. L., Richter, B. D., Sparks, R. E., & Stromberg, J. C. (1997). The Natural Flow Regime: A Paradigm for River Conservation and Restoration. Bioscience, 47, 769-784.
https://doi.org/10.2307/1313099
[128]  Popoli, M., Yan, Z., McEwen, B., & Sanacora, G. (2011). The Stressed Synapse: The Impact of Stress and Glucocorticoids on Glutamate Transmission. Nature Reviews Neuroscience, 13, 22-37.
https://doi.org/10.1038/nrn3138
[129]  Rafferty, J. P., & Pimm, S. L. (2019). Desertification Ecology. In Encyclopædia Britannica. Scotland: Encyclopedia Britannica Inc.
[130]  Rahman, A. (2016). Impact of Human Activities on Wetland: A Case Study from Bongaigaon District, Assam, India. International Journal of Current Microbiology and Applied Sciences, 5, 392-396.
https://doi.org/10.20546/ijcmas.2016.503.046
[131]  Rasler, K., & Thompson, W. R. (1985). War and the Economic Growth of Major Powers. American Journal of Political Science, 29, 513-538.
https://doi.org/10.2307/2111141
[132]  Rates of Deforestation & Reforestation in the U.S.
[133]  Reyjol, Y., Hugueny, B., Pont, D., Bianco, P. G., Beier, U., Caiola, N., Casals, F., Cowx, I. G., Economou, A., Ferreira, M. T., Haidvogl, G., Noble, R., de Sostoa, A., Vigneron, T., & Virbickas, T. (2007). Patterns in Species Richness and Endemism of European Freshwater Fish. Global Ecology and Biogeography, 16, 65-75.
https://doi.org/10.1111/j.1466-8238.2006.00264.x
[134]  Riedo, M., Gyalistras, D., & Fuhrer, J. (2001). Pasture Responses to Elevated Temperature and Doubled CO2 Concentration: Assessing the Spatial Pattern across an Alpine Landscape. Climate Research, 17, 19-31.
https://doi.org/10.3354/cr017019
[135]  Rosenzweig, C., & Hillel, D. (1993). The Dust Bowl of the 1930s: Analog of Greenhouse Effect in the Great Plains? Journal of Environmental Quality, 22, 9-22.
https://doi.org/10.2134/jeq1993.00472425002200010002x
[136]  Saboureau, M., Bobet, J. P., & Boissin, J. (1980). Cyclic Activity of Adrenal Function and Seasonal Variations of Cortisol Peripheral Metabolism in a Hibernating Mammal, the Hedgehog (Erinaceus europaeus L.). Journal of Physiology (Paris), 76, 617-629.
[137]  Scharf, I., Wexler, Y., MacMillan, H. A., Presman, S., Simson, E., & Rosenstein, S. (2016). The Negative Effect of Starvation and the Positive Effect of Mild Thermal Stress on Thermal Tolerance of the Red Flour Beetle, Tribolium castaneum. Naturwissenschaften, 103, 20.
https://doi.org/10.1007/s00114-016-1344-5
[138]  Schöll, E. M. et al. (2019). Diurnal Patterns of Ambient Temperature But Not Precipitation Influence Incubation Behavior in Great Tits. Journal of Ornithology, 161, 529-538.
https://doi.org/10.1007/s10336-019-01737-9
[139]  Schulte, P. M. (2015). The Effects of Temperature on Aerobic Metabolism: Towards a Mechanistic Understanding of the Responses of Ectotherms to a Changing Environment. Journal of Experimental Biology, 218, 1856-1866.
https://doi.org/10.1242/jeb.118851
[140]  Seebacher, F., & Post, E. (2015). Climate Changes Impacts on Animal Migration. Climate Change Responses, 2, Article No. 5.
https://doi.org/10.1186/s40665-015-0013-9
[141]  Shaughnessy, C. A., & McCormick, S. D. (2018). Reduced Thermal Tolerance during Salinity Acclimation in Brook Trout (Salvelinus fontinalis) Can Be Rescued by Prior Treatment with Cortisol. Journal of Experimental Biology, 221, pii: jeb169557.
https://doi.org/10.1242/jeb.169557
[142]  Shukla, J., Nobre, C., & Sellers, P. (1990). Amazon Deforestation and Climate Change. Science, 247, 1322-1325.
https://doi.org/10.1126/science.247.4948.1322
[143]  Sievers, M., Hale, R., Parris, K. M., & Swearer, S. E. (2018). Impacts of Human-Induced Environmental Change in Wetlands on Aquatic Animals. Biological Reviews of the Cambridge Philosophical Society, 93, 529-554.
https://doi.org/10.1111/brv.12358
[144]  Smit, B., & Wandel, J. (2006). Adaptation, Adaptive Capacity and Vulnerability. Global Environmental Change, 16, 282-292.
https://doi.org/10.1016/j.gloenvcha.2006.03.008
[145]  Smith, K. R., Woodward, A., Campbell-Lendrum, D., Chadee, D. D., Honda, Y., Liu, Q., Olwoch, J. M., Revich, B., & Sauerborn, R. (2014). Human Health: Impacts, Adaptation, and Co-Benefits. In C. B. Field (Ed.), Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 709-754). Cambridge and New York: Cambridge University Press.
[146]  Smith, L. C. (2000). Trends in Russian Arctic River-Ice Formation and Breakup, 1917 to 1994. Physical Geography, 21, 46-56.
https://doi.org/10.1080/02723646.2000.10642698
[147]  Stacey, D. A., & Fellows, M. D. E. (2002). Influence of Elevated CO2 on Interspecific Interactions at Higher Trophic Levels. Global Change Biology, 8, 668-678.
https://doi.org/10.1046/j.1365-2486.2002.00506.x
[148]  Sur, S., Sharma, A., Trivedi, A. K., Bhardwaj, S. K., & Kumar, V. (2019). Temperature Affects Liver and Muscle Metabolism in Photostimulated Migratory Redheaded Buntings (Emberiza bruniceps). Journal of Comparative Physiology B, 189, 623-635.
https://doi.org/10.1007/s00360-019-01229-5
[149]  Tacoli, C. (2009). Crisis or Adaptation? Migration and Climate Change in a Context of High Mobility. Environment and Urbanization, 21, 513-525.
https://doi.org/10.1177/0956247809342182
[150]  Todd, B. D., Scott, D. E., Pechmann, J. H. K., & Whitfield Gibbons, J. (2011). Climate Change Correlates with Rapid Delays and Advancements in Reproductive Timing in an Amphibian Community. Proceedings of the Royal Society B: Biological Sciences, 278, 2191-2197.
https://doi.org/10.1098/rspb.2010.1768
[151]  Tomotani, B. M., van der Jeugd, H., Gienapp, P., de la Hera, I., Pilzecker, J., Teichmann, C., & Visser, M. E. (2018). Climate Change Leads to Differential Shifts in the Timing of Annual Cycle Stages in a Migratory Bird. Global Change Biology, 24, 823-835.
https://doi.org/10.1111/gcb.14006
[152]  van den Bosch, M., & Meyer-Lindenberg, A. (2019). Environmental Exposures and Depression: Biological Mechanisms and Epidemiological Evidence. Annual Review of Public Health, 40, 239-259.
https://doi.org/10.1146/annurev-publhealth-040218-044106
[153]  Veteli, T. O., Kuokkanen, K., Julkunen-Tiitto, R., Roininen, H., & Tahvanainen, J. (2002). Effects of Elevated CO2 and Temperature on Plant Growth and Herbivore Defensive Chemistry. Global Change Biology, 8, 1240-1252.
https://doi.org/10.1046/j.1365-2486.2002.00553.x
[154]  Vinagre, C., Leal, I., Mendonça, V., & Flores, A. A. (2015). Effect of Warming Rate on the Critical Thermal Maxima of Crabs, Shrimp and Fish. Journal of Thermal Biology, 47, 19-25.
https://doi.org/10.1016/j.jtherbio.2014.10.012
[155]  Visser, M. E., & Both, C. (2005). Shifts in Phenology Due to Global Climate Change: The Need for a Yardstick. Proceedings of the Royal Society B: Biological Sciences, 272, 2561-2569.
[156]  Walsh, J. R., Carpenter, S. R., & Vander Zanden, M. J. (2016). Invasive Species Triggers a Massive Loss of Ecosystem Services through a Trophic Cascade. Proceedings of the National Academy of Sciences of the United States of America, 13, 4081-4085.
https://doi.org/10.1073/pnas.1600366113
[157]  Wang, H. T., Liu, Z. D., Lao, J. H., Zhao, Z., & Jiang, B. F. (2019). Lag Effect and Influencing Factors of Temperature on Other Infectious Diarrhea in Zhejiang Province. Chinese Journal of Epidemiology, 40, 960-964.
[158]  Webb, P., Stordalen, G. A., Singh, S., Wijesinha-Bettoni, R., Shetty, P., & Lartey, A. (2018). Hunger and Malnutrition in the 21st Century. BMJ, 361, k2238.
https://doi.org/10.1136/bmj.k2238
[159]  Westerling, A. L., Hidalgo, H. G., Cayan, D. R., & Swetnam, T. W. (2006). Warming and Earlier Spring Increase Western U.S. Forest Wildfire Activity. Science, 313, 940-943.
https://doi.org/10.1126/science.1128834
[160]  Whitmore, T. C. (1990). An Introduction to Tropical Rain Forests. Hoboken, NJ: John Wiley & Sons Ltd.
https://doi.org/10.1111/j.1756-1051.1991.tb01264.x
[161]  WHO (2004). The Global Burden of Disease: 2004 Update.
https://www.who.int/healthinfo/global_burden_disease/en/
[162]  Wilby, R. L., & Harris, I. (2006). A Framework for Assessing Uncertainties in Climate Change Impacts: Low Flow Scenarios for the River Thames. Water Resources Research, 42, W02419.
https://doi.org/10.1029/2005WR004065
[163]  Wilkinson, C. (2004). Statusofcoral Reefsofthe World.
[164]  Willetts, E., Guadagno, L., & Ikkala, N. (2010). Addressing Climate Change, Issues and Solutions from around the World (40 p.). Gland: IUCN.
[165]  Woodward, G., Perkins, D. M., & Brown, L. E. (2010). Climate Change and Freshwater Ecosystems: Impacts across Multiple Levels of Organization. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 365, 2093-2106.
https://doi.org/10.1098/rstb.2010.0055
[166]  Working Group III Technical Support Unitc/o Imperial College.
[167]  World Wildlife Funds (WWF) (2011). World Wildlife Fund’s 50th Anniversary Year World Wildlife Fund. Washington DC.
https://www.worldwildlife.org/
[168]  Xu, X. M., Chi, Q. S., Cao, J., & Zhao, Z. J. (2018). The Effect of Aggression I: The Increases of Metabolic Cost and Mobilization of Fat Reserves in Male Striped Hamsters. Hormones and Behavior, 98, 55-62.
https://doi.org/10.1016/j.yhbeh.2017.12.015
[169]  Youssef, A., Exadaktylos, V., & Berckmans, D. (2014). Modelling and Quantification of the Thermoregulatory Responses of the Developing Avian Embryo: Electrical Analogies of a Physiological System. Journal of Thermal Biology, 44, 14-19.
https://doi.org/10.1016/j.jtherbio.2014.05.006
[170]  Zaime, A., Laraki, M., Gautier, J. Y., & Garnier, D. H. (1992). Seasonal Variations of Androgens and of Several Sexual Parameters in Male Meriones Shawi in Southern Morocco. General and Comparative Endocrinology, 86, 289-296.
https://doi.org/10.1016/0016-6480(92)90113-X
[171]  Zeng, N., & Yoon, J. (2009). Expansion of the World’s Deserts Due to Vegetation-Albedo Feedback under Global Warming. Geophysical Research Letters, 36, 17.
https://doi.org/10.1029/2009GL039699
[172]  Zuckerberg, B., Ribic, C. A., & McCauley, L. A. (2018). Effects of Temperature and Precipitation on Grassland Bird Nesting Success as Mediated by Patch Size. Conservation Biology, 32, 872-882.
https://doi.org/10.1111/cobi.13089

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133