全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Assessment of the Energy Conversion on the Thermal Balance and Atmospheric Emissions in Ceramic Tile Product Industry in Tunisia: A Case Study

DOI: 10.4236/acs.2020.104024, PP. 421-442

Keywords: Ceramic, Energy Conversion, Cogeneration, Energy Balance, Atmospheric Emissions

Full-Text   Cite this paper   Add to My Lib

Abstract:

This work aims to assess the effect of energy conversion (Thermal oil, Natural gas and cogeneration system) on atmospheric emission and energy consumption in ceramic tile product sector in Tunisia. Two tile manufactures were selected. The first plant has two production lines: The first line (FF1) operates with thermal oil with a lower calorific value (LHV) of 9811 cal/g and the second line (FG1) operating with natural gas has a lower calorific value (HHV) of 10,520 cal/g, ensuring a daily output of 300 tons each one. The second manufacture (SC2) operates with natural gas with the same LHV value. The thermal oil energy balance showed a specific consumption of 0.0481 toe/ton tile product for the FF1 manufacture line, 0.0198 toe/ton of tile product for the FG1 manufacture line and 0.0143 toe/ton of tile product for the SC2 manufactory. The electrical energy consumption was 0.0121 toe/ton of tile product for the FF1 line, 0.0108 toe/ton of tile product for the FG1 line and a production of energy (exergy) of 0.014 toe/ton for the SC2 production line. The specific consumption was split into 40% for dryer and 60% for tunnel kilns. The conversion allow to record a dryer reduction rate of 80% for nitrogen oxides (NOx), 56% for sulfur oxides (SOx), 56% for fluorinated compounds, 52% for chlorinated compounds and 52% for volatile organic compound. Whereas, the kiln reduction rate was 36% for nitrogen oxides, 51% for sulfur oxides, 36% for chlorinated compounds and 55% for fluorinated and 50% for volatile organic compounds (VCOs). Compared to natural gas line, the use of cogeneration system in kiln process shows a decrease of 67% for NOx emissions, 80% for SOx emissions, 89% for fluorinated compounds, 58% for chlorinated emissions and 64% for volatiles organic compounds. Compared to thermal oil, the use of cogeneration system reduces the thermal energy consumption by 70% and allowed to save 30% of electric energy by generate 20% of needed electric energy. The specific atmospheric gaseous emission level decrease from 2.066 g/kg of tile product for the thermal oil process to reach 0.43 g/kg of tile product for cogeneration process.

References

[1]  Baccour, Z., et al. (2011) Caractérisation physico chimique et Mécanique de Matériaux Céramiques obtenus à partir des argiles tunisiennes. Verres, Céramiques et Composites, 1, 25-33.
[2]  Pardo, F., Meseguer, S., Jordán, M.M., Sanfeliu, T. and González, I. (2011) Firing Transformations of Chilean Clays for the Manufacture of Ceramic Tile Bodies. Applied Clay Science, 51, 147-150.
https://doi.org/10.1016/j.clay.2010.11.022
[3]  Ben M’barek Jemaï, M., Sdiri, A., Errais, E., Duplay, J., Ben Saleh, I., Zagrarni, M.F. and Bouaziz, S. (2015) Characterization of the Ain Khemouda Halloysite (Western Tunisia) for Ceramic Industry. Journal of African Earth Sciences, 111, 194-201.
https://doi.org/10.1016/j.jafrearsci.2015.07.014
[4]  Ben Salah, I., Ben M’barek-Jemaï, M., Sdiri, A. and Boughdiri, M. (2018) Potential Use of Lower Cretaceous Clay (Kef Area, Northwestern Tunisia) as Raw Material to Supply Ceramic Industry. Applied Clay of Sciences, 161, 151-162.
https://doi.org/10.1016/j.clay.2018.04.015
[5]  Eloussaief, M., Fakhfakh, N., Sdiri, A., Bouaziz, S. and Benzina, M. (2012) An Experimental Design for the Optimization of Brick Manufacturing Procedure: Application on the Late Miocene Clays, Southern Tunisia. Transactions of the Indian Ceramic Society, 71, 195-202.
https://doi.org/10.1080/0371750X.2012.762154
[6]  Bovea, M.D., et al. (2010) Environmental Performance of Ceramic Tiles: Improvement Proposals. Materials & Design, 31, 35-41.
https://doi.org/10.1016/j.matdes.2009.07.021
[7]  Hachani, M., Hajjaji, W., Moussi, B., Medhioub, M., Rocha, F., Labrincha, J.A. and Jamoussi, F. (2012) Production of Ceramic Bodies from Tunisian Cretaceous Clays. Clay Minerals, 47, 59-68.
https://doi.org/10.1180/claymin.2012.047.1.59
[8]  Ben M’Barek-Jemaï, M., Sdiri, A., Ben Salah, I., et al. (2017) Geological and Technological Characterization of the Late Jurassic-Early Cretaceous Clay Deposits (Jebel Ammar, Northeastern Tunisia) for Ceramic Industry. Journal of African Earth Sciences, 129, 282-290.
https://doi.org/10.1016/j.jafrearsci.2017.01.019
[9]  Jeridi, K., Hachani, M., Hajjaji, W., Moussi, B., Medhioub, M., López-Galindo, A., Kooli, F. and Zargouni (2008) Ceramic Behaviour of Tunisian Clays during Earthenware Tile Production by Dry and Wet Grinding Processes. Clay Minerals, 43, 339.
https://doi.org/10.1180/claymin.2008.043.3.01
[10]  Jamoussi, F., Bédir, M., Boukadi, N., Kharbachi, S., Zargouni, F., López-Galindo, A. and Paquet, H. (2003) Répartition des minéraux argileux et contrôle tectono-eustatique dans les bassins de la marge tunisienne. Comptes Rendus Geoscience, 335, 175-183.
https://doi.org/10.1016/S1631-0713(03)00014-2
[11]  Medhioub, M., Hajjaji, W., Hachani, M., Lopez-Galindo, A., Rocha, F., Labrincha, J.A. and Jamoussi, F. (2012) Ceramic Tiles Based on Central Tunisian Clays (Sidi Khalif Formation). Clay Minerals, 47, 165-175.
https://doi.org/10.1180/claymin.2012.047.2.02
[12]  Ben M’barek-Jemaï, M., Sdiri, A., Ben Salah, I., Ben Aissa, L., Bouaziz, S. and Duplay, J. (2017) Geological and Technological Characterization of the Late Jurassic-Early Cretaceous Clay Deposits (Jebel Ammar, Northeastern Tunisia) for Ceramic Industry. Journal of African Earth Sciences, 129, 282-290.
https://doi.org/10.1016/j.jafrearsci.2017.01.019
[13]  Labrincha, F.J. and Jamoussi, F. (2008) Technological Behaviour of Some Tunisian Clays Prepared by Dry Ceramic Processing. Clay Minerals, 43, 339-350.
https://doi.org/10.1180/claymin.2008.043.3.01
[14]  Mahmoudi, S., Srasra, E. and Zargouni, F. (2008) Characterization of Valangenian-Hauterivian Clays of Northwestern Tunisia for Ceramic. Arabian Journal for Science and Engineering, 33, 229-243.
[15]  Balli, L., et al. (2014) Modélisation et simulation numérique des transferts thermiques dans un four à poterie, Verres. Céramiques & Composite, 3, 12-17.
[16]  Michot, A. (2008) Caractéristiques thermo physique de matériaux à base d’argile: Evolution avec traitements thermiques jusqu’à 1400 °C. Thèse doctorat, Université de Limoges Faculté des Sciences, 5.
[17]  Jordán, M.M., Montero, M.A., Meseguer, S. and Sanfeliu, T. (2008) Influence of Firing Temperature and Mineralogical Composition on Bending Strength and Porosity of Ceramic Tile Bodies. Applied Clay Science, 42, 266-271.
https://doi.org/10.1016/j.clay.2008.01.005
[18]  El Hajer, H. (1983) Contrôle et conduite numérique d’un four tunnel d’industrie céramique. Thèse de doctorat, Université Paul Sabatier, Toulouse, 10.
[19]  Kassinopoulos, M. (1980) Modélisation et commande sous optimale d’un four d’industrie céramique. Thèse de doctorat, Université Paul Sabatier des Sciences, Toulouse, 4.
[20]  Carvalho, M. and Silva, J. (2017) Second Law Assessment of a Hoffmann Kiln for the Red Ceramics Industry. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 40, Article No. 525.
https://doi.org/10.1007/s40430-018-1444-6
[21]  Lazrabal, A.E. (1985) Identification et optimisation d’un four tunnel d’industrie céramique. Thèse de doctorat, Université Paul Sabatier, Toulouse, 10.
[22]  Standard NF M03-018 (2010) Solid Mineral Fuels—Determination of Nitrogen.
[23]  Standard NF M03-032 (2015) Charbon et coke—Dosage du carbone et de l’hydrogène par combustion à haute temperature.
[24]  Standard NF T 60-154. Teneur en eau—étanche et inerte Karl Fischer.
[25]  Wauquier, J.P. (1994) Le raffinage de petrole. Produits petroliers—Schémas de fabrication—Institut français de pétrole-Edition Technip.
[26]  Standard ISO 14532 (2014) Terms, Definitions, Symbols, and Abbreviations Used in the Field of Natural Gas.
[27]  Standard NF EN 14211(2005) Qualité de l’air ambiant—Méthode normalisée pour le mesurage de la concentration en dioxyde d’azote et monoxyde d’azote par chimiluminescence.
[28]  Standard NF EN 14626 (2005) Qualité de l’air ambiant—Méthode normalisée de mesurage de la concentration en monoxyde de carbone par la méthode à rayonnement infrarouge non dispersive.
[29]  Standard NF EN 14212 (2005) Qualité de l’air ambiant—Méthode normalisée pour le mesurage de la concentration en dioxyde de soufre par fluorescence UV.
[30]  Mukherjee, S. and Ghosh, B. (2013) The Science of Clays: Applications in Industry, Engineering and Environment. In: The Science of Clays: Applications in Industry, Engineering and Environment, Springer, Berlin, 46-47.
[31]  American Society of Testing Materials (ASTM) (2018) Standard Test Methods for Sampling and Testing. Brick and Structural Clay Tile C67 1-17 (USA: American Society of Testing Materials).
[32]  Uche, J., Valero, A. and Serra, L. (2006) Fundamentals of Exergy Cost Accounting and Thermoeconomics. Part I: Theory. Journal of Energy Resources Technology, 128, 1-8.
https://doi.org/10.1115/1.2134732
[33]  Monfort, E., Mezquita, A., Vaquer, E., Mallol, G., Alves, H.J. and Boschi, A.O. (2012) Consumo de energía térmica y emisiones de dióxido de carbono en la fabricación de baldosas cerámicas Análisis de las industrias Española y Brasileña. Boletín de la Sociedad Española de Cerámica y Vidrio, 51, 275-284.
https://doi.org/10.3989/cyv.392012
[34]  Messias Laiete, S., LaraDos Santos, M., Helena, P. and Mariano Dos Santos, M. (2012) Fuels: Analysis of Plant Performance and Environmental Impact. In: de Souza, G., Ed., Thermal Power Plant Performance Analysis, Springer, London, 61-90.
https://doi.org/10.1007/978-1-4471-2309-5_4
[35]  Goldoni, S. and Bonoli, A. (2006) A Case Study about LCA of Ceramic Sector: Application of Life Cycle Analysis Results to the Environment Management System Adopted by the Enterprise. University of Bologna, Bologna.
[36]  Bustos, A.Y. and Guevara, E. (2007) Evaluación comparativa técnica, económica y ambiental de hornos colmena Utilizando como combustible carbón, fuel oíl, gas natural y el nuevo combustible CCTA (Colombia: Universidad Francisco de Paula Santander).
[37]  Samah, O.D., et al. (2006) Echanges thermiques dans un four à combustible eau sous pression et pétrole lampant: Modélisation d’un cycle de caisson. Journal des Sciences pour l’ingénieur, 6, 11-17.
https://doi.org/10.4314/jspi.v6i1.30024
[38]  Bovea, M.D., et al. (2010) Environmental Assessment of Alternative Municipal Solid Waste Management Strategies. A Spanish Case Study. Waste Management, 30, 2383-2395.
https://doi.org/10.1016/j.wasman.2010.03.001
[39]  Unidad de Planeacion Minero Energetica (UPME) (2008) Sistema de Gestión Integral de la Energía. Guía para la implementación (Colombia: Unidad de Planeación Minero-Energética).
[40]  Monroy, R., Romero, Y.A. and Gelves, J.F. (2018) Consumption of Energy in the Manufacturing of Ceramic Brick in the Metropolitan Area of Cúcuta, Colombia. Journal of Physics: Conference Series, 1126, Article ID: 012014.
https://doi.org/10.1088/1742-6596/1126/1/012014
[41]  Gerarden, T.D., Newell, R.G. and Stavins, R.N. (2015) Assessing the Energy-Efficiency Gap. National Bureau of Economic Research, Working Paper Series No. 20904.
https://doi.org/10.3386/w20904
[42]  Chan, Y. and Kantamaneni, R. (2015) Study on Energy Efficiency and Energy Saving Potential in Industry from Possible Policy Mechanisms. ICF International, Fairfax.
[43]  Jouhara, H., Khordehgah, N., Almahmoud, S., Delpech, B., Chauhan, A. and Tassou, S.A. (2018) Waste Heat Recovery Technologies and Applications. Thermal Science and Engineering Progress, 6, 268-289.
https://doi.org/10.1016/j.tsep.2018.04.017
[44]  Mezquita, A., Monfort, E., Vaquer, E., Ferrer, S., Arnal, M.A., Toledo, J. and Cuesta, M.A. (2012) Energy Optimisation in Ceramic Tile Manufacture by Using Thermal Oil. Conference Paper. Qualicert February.
[45]  García Afnador, N., Gómez Guerrero, G. and Monroy Sepúlveda, R. (2012) Mechanical & Physical Properties of Solid, Masonry Ceramic Bricks. Ciencia e Ingeniería Neogranadina, 22, 43-58.
https://doi.org/10.18359/rcin.248
[46]  Alves, H.J., Melchiades, F.G. and Boschi, A.O. (2008) Consumption of Natural Gas in Brazilian Ceramic Tile Industry. Ceramica, 54, 326-331.
https://doi.org/10.1590/S0366-69132008000300009
[47]  Almeida, M.I., et al. (2010) Life Cycle Assessment (Cradle to Gate) of a Portuguese Brick in Portugal SB10-Sustainable Building Affordable to All. Universidade do Minho, Vilamoura.
[48]  Koroneos, C. and Dompros, A. (2007) Environmental Assessment of Brick Production in Greece. Building and Environment, 42, 2114-2123.
https://doi.org/10.1016/j.buildenv.2006.03.006
[49]  Anson, D. and Sheppard, W.J. (1992) Impact of Ceramic Components in Gas Turbines for Industrial Cogeneration. The American Society of Mechanical Engineers, New York.
https://doi.org/10.1115/92-GT-393
[50]  Natália, A., Brasil, W. and Hirdan, K. (2019) Cogeneration Potential in the Industrial Sector and Gas Emission Reduction: A Case Study. Journal of Atmospheric Science Research, 2, 10-17.
[51]  European Bank (2012) Sub-Sectoral Environmental Guidelines—Brick Manufacture.
https://www.ebrd.com/documents/environment/subsectoral-brick-manufacturing.pdf
[52]  Tikul, N. and Srichandr, P. (2010) Assessing the Environmental Impact of Ceramic Tile Production in Thailand. Journal of the Ceramic Society of Japan, 118, 887-894.
https://doi.org/10.2109/jcersj2.118.887
[53]  Woolley, E., Luob, Y. and Simeone, A. (2018) Industrial Waste Heat Recovery: A Systematic Approach. Sustainable Energy Technologies and Assessments, 29, 50-59.
https://doi.org/10.1016/j.seta.2018.07.001
[54]  Monfort, E., Mezquita, A., Granel, R., Vaquer, E., Escrig, A., Miralles, A. and Zaera, V. (2010) Análisis de consumos energéticos y emisiones de dióxido de carbono en la fabricación de baldosas cerámicas. BOL SOC ESP CERAM V, 49, 303-310.
[55]  Egilegora, B., Jouharab, H., Zuazuac, J., Al-Mansourd, F., Plesnike, K., Montorsif, L. and Manzinig, L. (2019) ETEKINA: Analysis of the Potential for Waste Heat Recovery in Three Sectors: Aluminium Low Pressure Die Casting, Steel Sector and Ceramic Tiles Manufacturing Sector. International Journal of Thermofluids, 1-2, Article ID: 100002.
https://doi.org/10.1016/j.ijft.2019.100002
[56]  Escardinio, A. (2005) El esfuerzo en innovación de la industria cerámica de la Comunidad Valenciana para reducir las emisiones de dióxido de carbono. In: Simposio internacional sobre el cambio climático, desde la ciencia a la sociedad, Generalitat Valentina, Valencia, 121-133.
[57]  Schulze, M., et al. (2016) Energy Management in Industry. A Systematic Review of Previous Findings and an Integrative Conceptual Framework. Journal of Cleaner Production, 112, 3692-3708.
https://doi.org/10.1016/j.jclepro.2015.06.060
[58]  Gondim, P.A., et al. (2006) Viabilidade técnica de conversão de ceramicas do Rio Grande do Norte para Gás Natural. Ceramica Industrial, 13, 42-46.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133