全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

A New Theory on the Origin and Nature of the Fine Structure Constant

DOI: 10.4236/jhepgc.2020.64039, PP. 579-589

Keywords: Fine Structure Constant, Angular Rotation, Irrotational Vortex, Vortex Electron Structure, Hydrogen Atom Structure

Full-Text   Cite this paper   Add to My Lib

Abstract:

The nature and the origin of the fine structure are described. Based on the vortex model and hydrodynamics, a comprehensible interpretation of the fine structure constant is developed. The vacuum considered to have superfluid characteristics and elementary particles such as the electron and Hydrogen molecule are irrotational vortices of this superfluid. In such a vortex, the angular rotation ω is maintained, and the larger the radius, the slower the rotational speed. The fine structure value is derived from the ratio of the rotational speed of the boundaries of the vortex to the speed of the vortex eye in its center. Since the angular rotation is constant, the same value was derived from the ratio between the radius of the constant vortex core and the radius of the hall vortex. Therefore, the constancy of alpha is an expression of the constancy relation in the vortex structure.

References

[1]  Uzan, J.-P. (2003) The Fundamental Constants and Their Variation: Observational and Theoretical Status. Reviews of Modern Physics, 75, 403-455.
https://doi.org/10.1103/RevModPhys.75.403
[2]  Carroll, S.M. (2010) The Fine Structure Constant Is Probably Constant.
[3]  Michelson, A.A. and Morley, E.W. (1887) Phil Mag. 24. American Journal of Science, 34, 427.
https://doi.org/10.2475/ajs.s3-34.204.427
[4]  Sommerfeld, A. (1923) Atomic Structure and Spectral Lines. Methuen, London, 118.
[5]  Kragh, H.N. (2012) Bohr and the Quantum Atom. Oxford University Press, Oxford.
https://doi.org/10.1093/acprof:oso/9780199654987.001.0001
[6]  Sommerfeld, A. (1940) Zur Feinstruktur der Wasserstofflinien. Geschichte und gegenwartiger Stand der Theorie. Naturwissenschaften, 28, 417-423. (In German)
https://doi.org/10.1007/BF01490583
[7]  Bouchendira, R., Cladé, P., Guellati-Khélifa, S., Nez, F. and Biraben, F. (2011) New Determination of the Fine-Structure Constant and Test of the Quantum Electrodynamics. Physical Review Letters, 106, Article ID: 080801.
https://doi.org/10.1103/PhysRevLett.106.080801
[8]  Prestage, J.D., Tjoelker, R.L. and Maleki, L. (1995) Atomic Clocks and Variations of the Fine Structure Constant. Physical Review Letters, 74, 3511-3514.
https://doi.org/10.1103/PhysRevLett.74.3511
[9]  Damour, T. and Dyson, F. (1996) The Oklo Bound on the Time Variation of the Fine-Structure Constant Revisited. Nuclear Physics B, 480, 37-54.
https://doi.org/10.1016/S0550-3213(96)00467-1
[10]  Salomon, C., Dimarcq, N., Abgrall, M., et al. (2001) Cold Atoms in Space and Atomic Clocks. Comptes rendus de l'Académie des Sciences, Paris, Vol. IV, 1-17.
[11]  Mohr, P.J., Taylor, B.N. and Newell, D.B. (2015) The CODATA Recommended Values of the Fundamental Physical Constants (Web Version 7.0).
http://physics.nist.gov/constants
https://doi.org/10.6028/NIST.SP.961r2015
[12]  Gabrielse, G. (2009) Why Is Sideband Mass Spectrometry Possible with Ions in a Penning TRAP? Physical Review Letters, 102, Article ID: 172501.
https://doi.org/10.1103/PhysRevLett.102.172501
[13]  Webb, J.K., Flambaum, V.V., Churchill, C.W., Drinkwater, M.J. and Barrow, J.D. (1999) Search for Time Variation of the Fine Structure Constant. Physical Review Letters, 82, 884-887.
https://doi.org/10.1103/PhysRevLett.82.884
[14]  Webb, J.K., Murphy, M.T., Flambaum, V.V., Dzuba, V.A., Barrow, J.D., Churchill, C.W., et al. (2001) Further Evidence for Cosmological Evolution of the Fine Structure Constant. Physical Review Letters, 87, Article ID: 091301.
https://doi.org/10.1103/PhysRevLett.87.091301
[15]  Bekenstein, J.D. (2002) Physical Review. Part D. 66.
[16]  Damour, T., Piazza, F. and Veneziano, G. (2002) Runaway Dilaton and Equivalence Principle Violations. Physical Review Letters, 89, Article ID: 081601.
https://doi.org/10.1103/PhysRevLett.89.081601
[17]  Davies, P.C., Davis, T.M. and Lineweaver, C.H. (2002) Black Holes Constrain Varying Constants. Nature, 418, 602-603.
https://doi.org/10.1038/418602a
[18]  Forgacs, P. and Horvath, Z. (1979) On a Static Solution of the Einstein-Yang-Mills System in Six Dimensions. General Relativity and Gravitation, 10, 931-940.
https://doi.org/10.1007/BF00756757
[19]  Forgacs, P. and Horvath, Z. (1979) On the Influence of Extra Dimensions on the Homogeneous Isotropic Universe. General Relativity and Gravitation, 11, 205-216.
https://doi.org/10.1007/BF00762129
[20]  Magueijo, J. to be published in Reports in Progress of Physics.
[21]  Resonance (1999) 14(4).
[22]  Resonance (2011) 16(9).
[23]  Eichten, E.J., Lane, K.D. and Peskin, M.E. (1983) New Tests for Quark and Lepton Substructure. Physical Review Letters, 50, 811-814.
https://doi.org/10.1103/PhysRevLett.50.811
[24]  Gabrielse, G., Hanneke, D., Kinoshita, T., Nio, M. and Odom, B. (2006) New Determination of the Fine Structure Constant from the Electron Value and QED. Physical Review Letters, 97, Article ID: 030802.
https://doi.org/10.1103/PhysRevLett.97.030802
[25]  Curtis, L.J. (2003) Atomic Structure and Lifetimes: A Conceptual Approach. Cambridge University Press, Cambridge, 74.
https://doi.org/10.1017/CBO9780511755552
[26]  Shpolsky, E. (1951) Atomic Physics. 2nd Edition.
[27]  Clerk-Maxwell, J. (1861) On Physical Lines of Force. Philosophical Magazine, 21, 338-348.
http://vacuum-physics.com/Maxwell/maxwell_oplf.pdf
[28]  Jehle, H. (1971) Relationship of Flux Quantization to Charge Quantization and the Electromagnetic Coupling Constant. Physical Review D, 3, 306-345.
https://doi.org/10.1103/PhysRevD.3.306
[29]  Jehle, H. (1972) Flux Quantization and Particle Physics. Physical Review D, 6, 441-457.
https://doi.org/10.1103/PhysRevD.6.441
[30]  Jehle, H. (1975) Flux Quantization and Fractional Charges of Quarks. Physical Review D, 11, 2147-2177.
https://doi.org/10.1103/PhysRevD.11.2147
[31]  Jehle, H. (1977) Electron-Muon Puzzle and the Electromagnetic Coupling Constant. Physical Review D, 15, 3727-3759.
https://doi.org/10.1103/PhysRevD.15.3727
[32]  Maxwell, J.C. (2010) On Physical Lines of Force. Philosophical Magazine, 90, 11-23.
https://doi.org/10.1080/14786431003659180
[33]  Butto, N. (2020) Electron Shape and Structure: A New Vortex Theory. Journal of High Energy Physics, Gravitation and Cosmology, 6, 340-352.
https://doi.org/10.4236/jhepgc.2020.63027
[34]  Introduction to the Constants for Nonexperts—Current Advances: The FineStructure Constant and Quantum Hall Effect. NIST Reference on Constants, Units and Uncertainty. NIST.
[35]  Sommerfeld, A. (1916) On the Quantum Theory of Spectral Lines. Annals of Physics, 51, 125-167.
[36]  Butto, N. (2020) New Mechanism and Analytical Formula for Understanding the Gravity Constant G. Journal of High Energy Physics, Gravitation and Cosmology, 6, 357.
https://doi.org/10.4236/jhepgc.2020.63029

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133