全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Millimeter-Scale Liquid Droplet Migration on Solid Surface with Temperature Gradient: A Simulation Investigation

DOI: 10.4236/mme.2020.103004, PP. 34-38

Keywords: Liquid Droplet, Fluid Mechanics, Navier-Stokes Equation

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this paper, we established a time-dependent model that investigates the migration behavior of a millimeter-scale liquid droplet on a solid surface with temperature gradient. Both fluid mechanics and heat transfer are incorporated in the model. The Navier-Stokes equation is employed both inside and outside the droplet. Size variation is observed in the transient simulation. Results show that the velocity of the migration is about 1.7 mm/s under a temperature gradient of 30 K/mm. The model is consistent with results with previous literatures.

References

[1]  Sefiane, K. (2010) On the Formation of Regular Patterns from Drying Droplets and Their Potential Use for Bio-Medical Applications. Journal of Bionic Engineering, 7, S82-S93.
https://doi.org/10.1016/S1672-6529(09)60221-3
[2]  Vergauwe, N., Witters, D., Atalay, Y.T., Verbruggen, B., Vermeir, S., Ceyssens, F., Puers, R. and Lammertyn, J. (2011) Controlling Droplet Size Variability of a Digital Lab-On-A-Chip for Improved Bio-Assay Performance. Microfluidics and Nanofluidics, 11, 25-34.
https://doi.org/10.1007/s10404-011-0769-6
[3]  Schwartz, J.A., Vykoukal, J.V. and Gascoyne P.R.C. (2004) Droplet-Based Chemistry on a Programmable Micro-Chip. Lab on a Chip, 4, 11-17.
https://doi.org/10.1039/b310285h
[4]  Kim, B., Kim, J. and Bard, A.J. (2015) Electrochemistry of a Single Attoliter Emulsion Droplet in Collisions. Journal of the American Chemical Society, 137, 2343-2349.
https://doi.org/10.1021/ja512065n
[5]  Farouk, T.I., Liu, Y.C., Savas, A.J., Avedisian, C.T. and Dryer, F.L. (2013) Sub-Millimeter Sized Methyl Butanoate Droplet Combustion: Microgravity Experiments and Detailed Numerical Modeling. Proceedings of the Combustion Institute, 34, 1609-1616.
https://doi.org/10.1016/j.proci.2012.07.074
[6]  Yang, T., Kwon, B., Weisensee, P.B., Jin, G.K., Li, X., Braun, P., Miljkovic, N. and King, W.P. (2018) Millimeter-Scale Liquid Metal Droplet Thermal Switch. Applied Physics Letters, 112, Article number: 063505.
https://doi.org/10.1063/1.5013623
[7]  Yoo, Y.J., Ju, S., Park, S.Y., Kim, Y.J., Bong, J., Lim, T., Kim, K.W., Rhee, J.Y. and Lee., Y.P. (2015) Metamaterial Absorber for Electromagnetic Waves in Periodic Water Droplets. Scientific Reports, 5, Article number: 14018.
https://doi.org/10.1038/srep14018
[8]  Malouin Jr., B.A., Vogel, M.J. and Hirsa, A.H. (2010) Electromagnetic Control of Coupled Droplets. Applied Physics Letters, 96, Article number: 214104.
https://doi.org/10.1063/1.3428787
[9]  White, F.M. (2015) Fluid Mechanics.
[10]  Schetz, J.A. and Fuhs, A.E. (1999) Fundamentals of Fluid Mechanics. John Wiley & Sons, New York.
[11]  Tseng, Y., Tseng, F., Chen, Y. and Chieng, C. (2004) Fundamental Studies on Micro-Droplet Movement by Marangoni and Capillary Effects. Sensors and Actuators A: Physical, 114, 292-301.
https://doi.org/10.1016/j.sna.2003.12.007

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133