All Title Author
Keywords Abstract

Publish in OALib Journal
ISSN: 2333-9721
APC: Only $99

ViewsDownloads

Relative Articles

More...

Phase Transitions Governed by the Fifth Power of the Golden Mean and Beyond

DOI: 10.4236/wjcmp.2020.103009, PP. 135-158

Keywords: Golden Mean, Phase Transitions, Hard-Hexagon Respectively Hard-Square Gas Model, Quantum Probability, Information Relativity Theory (IRT), ε-Infinity Theory, Superconductivity, Tammes Problem, Viral Morphology, Helical Microtubules, Janičko Number Sequence, Topological Quantum Computation, Fibonacci Lattice, Crystallography

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this contribution results from different disciplines of science were compared to show their intimate interweaving with each other having in common the golden ratio φ respectively its fifth power φ5. The research fields cover model calculations of statistical physics associated with phase transitions, the quantum probability of two particles, new physics of everything suggested by the information relativity theory (IRT) including explanations of cosmological relevance, the ε-infinity theory, superconductivity, and the Tammes problem of the largest diameter of N non-overlapping circles on the surface of a sphere with its connection to viral morphology and crystallography. Finally, Fibonacci anyons proposed for topological quantum computation (TQC) were briefly described in comparison to the recently formulated reverse Fibonacci approach using the Janičko number sequence. An architecture applicable for a quantum computer is proposed consisting of 13-step twisted microtubules similar to tubulin microtubules of

References

[1]  Olson, S. (2006) The Golden Section: Nature’s Greatest Secret. Bloomsbury, London, 64 p.
[2]  Olsen, S., Marek-Crnjak, L., He, J.H. and El Naschie, M.S. (2020) A Grand Unification of the Sciences, Art & Consciousness: Rediscovering the Pythagorean Plato’s Golden Mean Number System. Journal of Progressive Research in Mathematics, 16, 2880-2931.
[3]  Sherbon, M.A. (2014) Fundamental Nature of the Fine-Structure Constant. International Journal of Physical Research, 2, 1-9.
https://doi.org/10.14419/ijpr.v2i1.1817
[4]  Otto, H.H. (2017) Continued Fraction Representations of Universal Numbers and Approximations. Researchgate.net, 1-4.
[5]  El Naschie, M.S. (2013) Quantum Entanglement: Where Dark Energy and Negative Gravity plus Accelerated Expansion of the Universe Comes from. Journal of Quantum Information Science, 3, 57-77.
https://doi.org/10.4236/jqis.2013.32011
[6]  Ho, M.-W. (2014) Golden Geometry and E-Infinity Fractal Spacetime. Story of Phi Part 5. Researchgate.
[7]  Marek-Crnjac, L. (2013) Cantorian Space-Time Theory. Lambert Academic Publishing, Saarbrücken, 1-50.
[8]  Irwin, K. (2019) Towards the Unification of Physics and Number Theory. Reports in Advances of Physical Sciences 3, Article ID: 1950003.
[9]  Suleiman, R. (2019) Relativizing Newton. Nova Scientific Publisher, New York, 1-207.
[10]  Andrews, G.E. (1981) Ramanujan’s “Lost” Notebook. III. The Rogers-Ramanujan Continued Fraction. Advances in Mathematics, 41, 186-208.
https://doi.org/10.1016/0001-8708(81)90015-3
[11]  Baxter, R.J. (1980) Hard Hexagons: Exact Solution. Journal of Physics A: Mathematical and General, 13, L61-L70.
https://doi.org/10.1088/0305-4470/13/3/007
[12]  Baxter, R.J., Enting, I.G. and Tsang, S.K. (1980) Hard-Square Lattice Gas. Journal of Statistical Physics, 22, 465-489.
https://doi.org/10.1007/BF01012867
[13]  Baxter, R.J. (1982) Exactly Solved Models in Statistical Mechanics. Academic Press, London.
[14]  Hardy, L. (1993) Nonlocality for Two Particles without Inequalities for Almost All Entangled States. Physical Review Letters, 71, 1665-1668.
https://doi.org/10.1103/PhysRevLett.71.1665
[15]  Mermin, N.D. (1994) Quantum Mysteries Refined. American Journal of Physics, 62, 880-887.
https://doi.org/10.1119/1.17733
[16]  Otto, H.H. (2018) Reciprocity Relation between the Mass Constituents of the Universe and Hardy’s Quantum Entanglement Probability. World Journal of Condensed Matter Physics, 8, 30-35.
https://doi.org/10.4236/wjcmp.2018.82003
[17]  Otto, H.H. (2016) A Different Approach to High-Tc Superconductivity: Indication of Filamentary-Chaotic Conductance and Possible Routes to Superconductivity above Room Temperature. World Journal of Condensed Matter Physics, 6, 244-260.
https://doi.org/10.4236/wjcmp.2016.63023
[18]  Otto, H.H. (2019) Super-Hydrides of Lanthanum and Yttrium: On Optimal Conditions for Achieving near Room Temperature Superconductivity. World Journal of Condensed Matter Physics, 9, 22-36.
https://doi.org/10.4236/wjcmp.2019.91002
[19]  Otto, H.H. (2020) Reciprocity as an Ever-Present Dual Property of Everything. Journal of Modern Physics, 11, 98-121.
https://doi.org/10.4236/jmp.2020.111007
[20]  Tammes, P.M.L. (1930) On the Origin of Number and Arrangement of the Places of Exit on Pollen Grains. Dissertation, J.H. De Bussy, Groningen. (See also Recueil des Travaux Botanique Néerlandais, 27, 1-84)
[21]  Trebst, S., Troyer, M., Wang, Z., Ludwig, A.W.W. (2009) A Short Introduction to Fibonacci Anyon Models. arXiv: 0902.3275v1 [cond-mat.stat-mech], 1-24.
[22]  Field, B. and Simula, T. (2018) Introduction to Topological Quantum Computation with Non-Abelian Anyons. arXiv: 1802.06176v2 [quant-ph].
[23]  Janičko, O. (2018) New Fundamental Discovery of the Reverse Fibonacci Sequence. Academia.edu, 1-6.
[24]  Onsager, L. (1944) Crystal Statistics. I. A Two-Dimensional Model with Order-Disorder Transition. Physical Review, 65, 117-149.
https://doi.org/10.1103/PhysRev.65.117
[25]  Finch, S.R. (2003) Mathematical Constants. Cambridge University Press, New York.
[26]  Assis, M., Jacobsen, J.L., Jensen, I., Maillard, J.M. and McCoy, B.M. (2013) The Hard Hexagon Partition Function for Complex Fugacity. Journal of Physics A: Mathematical and Theoretical, 46, Article ID: 445202.
https://doi.org/10.1088/1751-8113/46/44/445202
[27]  Tracy, C.A., Grove, L. and Newman, M.F. (1987) Modular Properties of the Hard Hexagon Model. Journal of Statistical Physics, 48, 477-502.
https://doi.org/10.1007/BF01019683
[28]  Klein, F. (1884) Vorlesungen über das Ikosaeder und die Auflösung der Gleichungen vom fünften Grad. Verlag B. G. Teubner, Leipzig.
[29]  Coldea, R., Tennant, D.A., Wheeler, E.M., Wawrzynska, E., Prabhakaram, D., Telling, M., Habicht, K., Smeibidl, P. and Kiefer, K. (2010) Quantum Criticality in an Ising Chain: Experimental Evidence for Emergent E8 Symmetry. Science, 327, 177-180.
https://doi.org/10.1126/science.1180085
[30]  Fendley, P., Sengupta, K. and Sanchev, S. (2004) Competing Density-Wave Orders in a One-Dimensional Hard-Boson Model. Physical Review B, 69, Article ID: 075106.
https://doi.org/10.1103/PhysRevB.69.075106
[31]  Cantor, G. (1932) Gesammelte Abhandlungen. Mathematischen und Philosophischen Inhalts. Springer, Berlin.
https://doi.org/10.1007/978-3-662-00274-2
[32]  Prester, M. (1999) Experimental Evidence of a Fractal Dissipative Regime in High-Tc Superconductors. Physical Review B, 60, 3100-3103.
https://doi.org/10.1103/PhysRevB.60.3100
[33]  Wagner, W. (1990) On Means of Distances on the Surface of a Sphere (Lower Bounds). Pacific Journal of Mathematics, 114, 389-398.
https://doi.org/10.2140/pjm.1990.144.389
[34]  Zhou, Y.M. (1995) Arrangements of Points on the Sphere. Ph.D. Thesis, University of South Florida, Tampa, FL.
[35]  Aste, T. and Weaire, D. (2000) The Pursuit of Perfect Packing. Taylor and Francis Group, Abingdon-on-Thames, 108-110.
[36]  Rakhmanov, E.A., Saff, E.B. and Zhou, Y.M. (1994) Minimal Discrete Energy on the Sphere. Mathematical Research Letters, 1, 647-662.
https://doi.org/10.4310/MRL.1994.v1.n6.a3
[37]  Saff, E.B. and Kuijlaars, A.B.J. (1997) Distributing Many Points on a Sphere. The Mathematical Intelligencer, 19, 5-11.
https://doi.org/10.1007/BF03024331
[38]  Bruinsma, R.F., Gelhart, W.M., Reguera, D., Rudnick, J. and Zandi, R. (2003) Viral Self-Assembly as a Thermodynamic Process. Physical Review Letters, 90, Article ID: 248101.
https://doi.org/10.1103/PhysRevLett.90.248101
[39]  Drake, J.M., Brett, T.S., Chen, S., Epureanu, B.I., Ferrari, M.J., Marty, E., Miller, P.B., O’Dea, E.B., O’Regan, S.M., Park, A.W. and Rohani, P. (2019) The Statistics of Epidemic Transitions. PLoS Computational Biology, 15, e1006917.
https://doi.org/10.1371/journal.pcbi.1006917
[40]  Penrose, R. and Hamedoff, S.R. (1995) Quantum Computing in Microtubules: Self-Collapse as a Possible Mechanism for Consciousness. Toward a Science of Consciousness. MIT Press, Cambridge, MA.
[41]  Penrose, R. and Hamedoff, S.R. (2011) Consciousness in the Universe: Neuroscience, Quantum Space-Time Geometry and Orch OR Theory. Journal of Cosmology, 14, 1-50.
[42]  Sahu, S., Ghosh, S., Fujita, D. and Bandyopadhyay, A. (2014) Live Visualization of Single Isolated Tubulin Protein Self-Assembly via Tunneling Current Effect of Electromagnetic Pumping during Spontaneous Growth of Microtubule. Scientific Reports, 4, Article No. 7303.
https://doi.org/10.1038/srep07303
[43]  Chamberland, C., Zhu, G., Yoder, T.J., Hertzberg, J.B. and Cross, A.W. (2019) Topological and Subsystem Codes on Low-Degree Graphs with Flag Qubits. ArXiv: 1907.09528v2 [quant-ph].
[44]  Pisano, L. (1202) Fibonacci’s Liber Abaci (Book of Calculation). Biblioteca Nazionale Centrale di Firenze, Firenze.
[45]  Lucas, E. (1891) Theorie des nombres. Gauthier-Villars, Paris.
[46]  Schumacher, B. (1995) Quantum Coding. Physical Review A, 51, 2738-2747.
https://doi.org/10.1103/PhysRevA.51.2738
[47]  Aharonov, D., Jones, V. and Landau, Z. (2006) A Polynomial Quantum Algorithm for Approximating the Jones Polynomial. Proceedings of the 38th Annual ACM Symposium on Theory of Computing, Seattle WA, May 2006, 427-436.
https://doi.org/10.1145/1132516.1132579
[48]  Nayak, C., Simon, S.H., Stern, A., Freedman, M. and Das Sarma, S. (2008) Non-Abelian Anyons and Topological Quantum Computation. Reviews of Modern Physics, 80, 1083-1159.
https://doi.org/10.1103/RevModPhys.80.1083
[49]  Freedman, M.H., Larsen, M.J. and Wang, Z. (2002) The Two-Eigenvalue Problem and Density of Jones Representation of Braid Groups. Communications in Mathematical Physics, 228, 177-199.
https://doi.org/10.1007/s002200200636
[50]  Trebst, S., Troyer, M., Zhenghan, W. and Ludwig, A.W.W. (2009) A Short Introduction to Fibonacci Anyon Models. arXiv: 0902.3275v1 [cond-mat.stat-mech].
[51]  Slingerland, J. (2007) Anyon Models—Theory, Interferometry, Bose Condensation. Presentation, UC Riverside, Caltech, California, USA.
[52]  Jones, V.F.R. (1985) A Polynomial Invariant for Knots via Von Neumann Algebras. Bulletin (New Series) of the American Mathematical Society, 12, 103-111.
https://doi.org/10.1090/S0273-0979-1985-15304-2
[53]  Field, B. and Simula, T. (2018) Introduction to Topological Quantum Computation with Non-Abelian Anyons. Quantum Science and Technology, 3, Article ID: 045004.
https://doi.org/10.1088/2058-9565/aacad2
[54]  Kuperberg, G. (2015) How Hard It Is to Approximate the Jones Polynomial? Theory of Computing, 11, 183-219.
https://doi.org/10.4086/toc.2015.v011a006
[55]  Otto, H.H. (2015) Pyroelectric Bi5−x(Bi2S3)39I12S: Fibonacci Superstructure, Synthesis Options and Solar Cell Potential. World Journal of Condensed Matter Physics, 5, 66-77.
https://doi.org/10.4236/wjcmp.2015.52010
[56]  Otto, H.H. (1965) Zur Kristallchemie synthetischer Blei-Wismut-Spießglanze. Thesis, TU, Berlin.
[57]  Salje, E. (2012) Ferroelastic Materials. Annual Review of Materials Research, 42, 265-283.
https://doi.org/10.1146/annurev-matsci-070511-155022
[58]  Kitaev, A. (2008) Anyons in an Exactly Solved Model and Beyond. arXiv: 0506438v3 [cond-mat.mes-hall], 1-113.
[59]  Wade, R.H., Chrétien, D. and Job, D. (1990) Characterization of Microtubule Protofilament Numbers. How Does the Surface Lattice Accommodate? Journal of Molecular Biology, 212, 775-786.
https://doi.org/10.1016/0022-2836(90)90236-F
[60]  Ti, S.C., Alushin, G.M. and Kapoor, T.M. (2018) Human β-Tubulin Isotypes Can Regulate Microtubule Protofilament Number and Stability. Developmental Cell, 47, 175-190.
https://doi.org/10.1016/j.devcel.2018.08.014
[61]  Irvin, K., Amaral, M.M., Aschheim, R. and Fang, F. (2017) Quantum Walk on a Spin Network and the Golden Ratio as a Fundamental Constant of Nature.
[62]  Otto, H.H. (2020) A Primer of Important Natural Numbers and Revisited Fundamental Physical Constants.
[63]  Fang, F., Irvin, K., Kovacs, J. and Sadler, G. (2013) Cabinet of Curiosities: The Interesting Geometry of the Angle β.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413