The theoretical study of chlorpropamide, tolazamide and glipizide was
carried out by the Density Functional
Theory (DFT) at B3LYP/6-31G(d) level. This studymade it possible to determine the global reactivity
parameters in order to better understand the interactions between the molecules
studied and the copper surface. Then, the determination of local reactivity
indices (Fukui functions and dual descriptor) on these molecules resulted in
the precision on the most probable centers of nucleophilic and electrophilic attacks within each molecule. The results
obtained, show that chloropropamide, tolazamide and glipizide can be good
inhibitors against copper corrosion. Thus, the mechanism of copper corrosion
inhibition of these compounds in nitric acid solution has been explained by means of theoretical calculations.
References
[1]
Nunéz, L., Reguera, E., Corvo, F. and Gonzalez, C. (2005) Corrosion of Copper in Seawater and Its Aerosols in a Tropical Island. Corrosion. Science, 47, 461-484. https://doi.org/10.1016/j.corsci.2004.05.015
[2]
Ho, C.E., Chen, W.T. and Kao, C.R. (2001) Interactions between Solder and Metallization during Long-Term Aging of Advanced Microelectronic Packages. Journal of Electronic Materials, 30, 379-385. https://doi.org/10.1007/s11664-001-0047-6
[3]
Breslin, C.B. and Macdonald, D.D. (1998) The Influence of UV Light on the Dissolution and Passive Behavior of Copper-Containing Alloys in Chloride Solutions. Portugaliae Electrochimica Acta, 44, 643-651. https://doi.org/10.1016/S0013-4686(98)00109-1
[4]
Abiola, O.K. and James, A.O. (2010) The Effects of Aloe Vera Extract on Corrosion and Kinetics of Corrosion Process of Zinc in HCl Solution. Corrosion Science, 52, 661-664. https://doi.org/10.1016/j.corsci.2009.10.026
[5]
Olasunkanmi, L.O., Obot, I.B., Kabanda, M.M. and Ebenso, E.E. (2015) Some Quinoxalin-6-yl Derivatives as Corrosion Inhibitors for Mild Steel in Hydrochloric Acid: Experimental and Theoretical Studies. The Journal of Physical Chemistry C, 119, 16004-16019. https://doi.org/10.1021/acs.jpcc.5b03285
[6]
Niamien, P.M., Essy, F.K., Trokourey, A., Yapi, A., Aka, H.K. and Diabate, D. (2012) Correlation between the Molecular Structure and the Inhibiting Effect of Some Benzimidazole Derivatives. Materials Chemistry and Physics, 136, 59-65. https://doi.org/10.1016/j.matchemphys.2012.06.025
[7]
Obot, I.B. and Obi-Egbedi, N.O. (2010) Adsorption Properties and Inhibition of Mild Steel Corrosion in Sulphuric Acid Solution by Ketoconazole: Experimental and Theoretical Investigation. Corrosion Science, 52, 198-204. https://doi.org/10.1016/j.corsci.2009.09.002
[8]
El Adnani, Z., Mcharfi, M., Sfaira, M., Benzakour, M., Benjelloun, A.T. and Ebu, M. (2013) DFT Theoretical Study of 7-R-3 Methylquinoxalin-2(1H)-thiones as Corrosion Inhibition in Hydrochloric Acid. Corrosion Science, 68, 223-230. https://doi.org/10.1016/j.corsci.2012.11.020
[9]
Popova, A., Christov, M. and Zwetanova, A. (2007) Effect of the Molecular Structure on the Inhibitor Properties of Azoles on Mild Steel Corrosion in 1 M Hydrochloric Acid. Corrosion Science, 49, 2131-2143. https://doi.org/10.1016/j.corsci.2006.10.021
[10]
Palomar-Pardavé, M., et al. (2013) DFT Study of the Adsorption of the Corrosion Inhibitor 2-Mercaptoimidazole onto Fe(100) Surface. Electrochimica Acta, 112, 577-586. https://doi.org/10.1016/j.electacta.2013.08.151
[11]
El Adnani, Z., Mcharfi, M., Sfaira, M., Benzakour, M., Benjelloun, A.T. and Ebn Touhami, M. (2013) DFT Theoretical Study of 7-R-3methylquinoxalin-2(1H)-thiones (RH;CH3;Cl) as Corrosion Inhibitors in Hydrochloric Acid. Corrosion Science, 68, 223-230. https://doi.org/10.1016/j.corsci.2012.11.020
[12]
Chidiebere, M.A., Oguzie, E.E. and Liu, L. (2015) Adsorption and Corrosion Inhibiting Effect of Riboflavin on Q235 Mild Steel Corrosion in Acidic Environments. Materials Chemistry and Physics, 156, 95-104. https://doi.org/10.1016/j.matchemphys.2015.02.031
[13]
Ebenso, E.E., Isabirye, D.A. and Eddy, N.O. (2010) Adsorption and Quantum Chemical Studies on the Inhibition Potentials of Some Thiosemicarbazides for the Corrosion of Mild Steel in Acidic Medium. International Journal of Molecular Sciences, 11, 2473-2498. https://doi.org/10.3390/ijms11062473
[14]
Lowmunkhong, P., Ungthararak, D. and Sutthivaiyakit, P. (2010) Triptamine as Corrosion Inhibitor of Mild Steel I Hydrochloric Acid Solution. Corrosion Science, 52, 30-36. https://doi.org/10.1016/j.corsci.2009.08.039
[15]
Singh, A.K. and Quraishi, M.A. (2010) Effect of Cefazolin on the Corrosion of Mild Steel in HCl Solution. Corrosion Science, 52, 152-160. https://doi.org/10.1016/j.corsci.2009.08.050
[16]
Chauhan, L.R. and Gunasekaran, G. (2007) Corrosion Inhibition of Mild Steel by Plant Extract in Dilute HCl Medium. Corrosion Science, 49, 1143-1161. https://doi.org/10.1016/j.corsci.2006.08.012
[17]
Singh, A.K., Mohapatra, S. and Pani, B. (2016) Corrosion Inhibition Effect of Aloe Vera gel: Gravimetric and Electrochemical Study. Journal of Industrial and Engineering Chemistry, 25, 288-297. https://doi.org/10.1016/j.jiec.2015.10.014
[18]
Deyab, M.A. (2015), Egyptian Licorice Extract as a Green Corrosion Inhibitor for Copper in Hydrochloric Acid Solution. Journal of Industrial and Engineering Chemistry, 25, 384-389. https://doi.org/10.1016/j.jiec.2014.07.036
[19]
Ahmed, R.A. (2016) Investigation of Corrosion Inhibition of Vitamins B1 and C on Mild Steel in 0.5 M HCl Solution: Experimental and Computational Approach. Oriental Journal of Chemistry, 32, 295-304. https://doi.org/10.13005/ojc/320133
[20]
Fucks-Godec, R. and Zergav, G. (2015) Corrosion Resistance of High-Level Hydrophobic Layers Combination with Vitamin E-(α-tocopherol) as Green Inhibitor. Corrosion Science, 97, 7-16. https://doi.org/10.1016/j.corsci.2015.03.016
[21]
Wazzan, N.A. and Mahgoub, F.M. (2014) DFT Calculations for Corrosion Inhibition of Ferrous Alloys by Pyrazolopyrimidine Derivatives. Open Journal of Physical Chemistry, 4, 6-14. https://doi.org/10.4236/ojpc.2014.41002
[22]
Eddy, N.O., Momoh-Yahaya, H. and Oguzie, E.E. (2015) Theoretical and Experimental Studies on the Corrosion Inhibition Potentials of Some Purines for Aluminium in 0.1 M HCl. Journal of Advanced Research, 6, 203-217. https://doi.org/10.1016/j.jare.2014.01.004
[23]
Ju, H., Kai, Z.P. and Li, Y. (2008) Aminic Nitrogen-Bearing Polydentate Schiff Base Compounds as Corrosion Inhibitors for Iron in Acidic Media: A Quantum Chemical Calculations. Corrosion Science, 50, 865-871. https://doi.org/10.1016/j.corsci.2007.10.009
[24]
Chan, G.K.-L. (1999) A Fresh Look at Ensembles: Derivative Discontinuities in Density Functional Theory. The Journal of Chemical Physics, 110, 4710-4723. https://doi.org/10.1063/1.478357
[25]
Obot, I.B. and Obi-Egbedi, N.O. (2008) Inhibitory Effect and Adsorption Characteristics of 2, 3-Diaminonaphthalene at Aluminum/Hydrochloric Acid Interface: Experimental and Theoretical Study. Surface Review and Letters, 15, 903-910. https://doi.org/10.1142/S0218625X08012074
[26]
Sen, K.D. (1987) Eletronegativity, Structure and Bonding 66. Springer-Verlag, Berlin, 27. https://doi.org/10.1007/BFb0029833
[27]
Sen, K.D. (1993) Chemical Hardness, Structure and Bonding 80. Springer-Verlag, Berlin, 79. https://doi.org/10.1007/BFb0036795
[28]
Parr, R.G. and Yang, W. (1989) Density Functional Theory of Atoms and Molecules. Oxford University Press, Oxford, 26-33.
[29]
Chattaraj, P.K., Sarkar, U. and Roy, D.R. (2006) Electrophilicity Index. Chemical Reviews, 106, 2065-2091. https://doi.org/10.1021/cr040109f
[30]
Parr, R.G. and Yang, W. (1984) Density Functional Approach to the Frontier Electron Theory of Chemical Reactivity. Journal of the American Chemical Society, 106, 4049-4050. https://doi.org/10.1021/ja00326a036
[31]
Morell, C., Grand, A. and Toro-Labbé, A. (2005) New Dual Descriptor for Chemical Reactivity. Journal of Physical Chemistry A, 109, 205-212. https://doi.org/10.1021/jp046577a
[32]
Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J.A., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, Ö., Foresman, J.B., Ortiz, J.V., Cioslowski, J. and Fox, A.D.J. (2009) Gaussian 09. Gaussian, Inc., Wallingford, CT.
[33]
Lee, C., Yang, W. and Parr, R.G. (1988) Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density. Physical Review B, 37, 785-789. https://doi.org/10.1103/PhysRevB.37.785
[34]
Becke, A.D. (1993) Density-Functional Thermochemistry. III. The Role of Exact Exchange. Journal of Chemical Physics, 98, 1372-1377. https://doi.org/10.1063/1.464913
[35]
Mulliken, R.S. (1955) Electronic Population Analysis on LCAOMO Molecular Wave Functions. Journal of Chemical Physics, 23, 1833-1840. https://doi.org/10.1063/1.1740588
[36]
Koopmans, T. (1934) About the Assignment of Wave Functions and Eigenvalues to the Individual Electrons of Atoms. über die Zuordnung von Wellenfunktionen und Eigenwerten zu den Einzelnen Elektronen Eines Atoms. Physica, 1, 104-113. https://doi.org/10.1016/S0031-8914(34)90011-2
[37]
Parr, R.G. and Yang, W. (1983) Absolute Hardness: Comparrion Parameter to Absolute Electronegativity. Journal of the American Chemical Society, 105, 7512-7516. https://doi.org/10.1021/ja00364a005
[38]
Yang, W. and Parr, R.G. (1986) Absolute Electronegativity and Hardness Correlated with Molecular Orbital Theory. Proceeding of the National Academy of Sciences, 83, 8440-8441. https://doi.org/10.1073/pnas.83.22.8440
[39]
Pearson, R.G. (1963) Hard and Soft Acids and Bases. Journal of the American Chemical Society, 85, 3533-3539. https://doi.org/10.1021/ja00905a001
[40]
Huheey, J.E. (1965) The Electronegativity of Groups. Journal of Chemical Physics, 69, 3284-3291. https://doi.org/10.1021/j100894a011
[41]
Vela, A. and Gazquez, J.L. (1990) A Relationship between the Static Dipole Polarizability, the Global Softness, and the Fukui Function. Journal of the American Chemical Society, 112, 1490-1492. https://doi.org/10.1021/ja00160a029
[42]
Parr, R.G., Szentpaly, L. and Liu, S. (1999) Electrophilicity Index. Journal of the American Chemical Society, 121, 1922-1924. https://doi.org/10.1021/ja983494x
[43]
Pearson, R.G. (1988) Absolute Electronegativity and Hardness: Application to Inorganic Chemistry. Inorganic Chemistry, 27, 734-740. https://doi.org/10.1021/ic00277a030
[44]
Michaelson, H.B. (1977) The Work Function of the Elements and Its Periodicity. Journal of Applied Physics, 48, 4729-4733. https://doi.org/10.1063/1.323539
[45]
Dewar, M.J.S., Zoebisch, E.G., Healy, E.F. and Stewart, J.P. (1985) Development and Use of Quantum Mechanical Molecular Models, 76, AM1: A New General Purpose Quantum Mechanical Molecular Model. Journal of the American Chemical Society, 107, 3902-3909. https://doi.org/10.1021/ja00299a024
[46]
Mendez, F. and Gazquez, J.L. (1994) Reactivity of Enolate Ions: The Local Hard and Soft Acids and Bases Principle Viewpoint. Journal of the American Chemical Society, 116, 9298-9301. https://doi.org/10.1021/ja00099a055
[47]
Yang, W. and Mortier, W.J. (1986) The Use of Global and Local Molecular Parameters for the Analysis of the Gas-Phase Basicity of Amines. Journal of the American Chemical Society, 108, 5708-5711. https://doi.org/10.1021/ja00279a008
[48]
Dewar, M.J.S. and Thiel, W. (1977) Ground States of Molecules, the MNDO Method Approximations and Parameters. Journal of Chemical Physics, 99, 4899-4907. https://doi.org/10.1021/ja00457a004
[49]
Obi-Egbedi, N.O., Obot, I.B. and El-Khaiary, M.I. (2011) Quantum Chemical Investigation and Statistical Analysis of the Relationship between Corrosion Inhibition Efficiency and Molecular Structure of Xanthene and Its Derivatives on Mild Steel in Sulphuric Acid. Journal of Molecular Structure, 1002, 86-96. https://doi.org/10.1016/j.molstruc.2011.07.003
[50]
Awad, M.K., Mustafa, M.R. and Abo Elnga, M.M. (2010) Computational Simulation of the Molecular Structure of Some Triazoles as Inhibitors for the Corrosion of Metal Surface. Journal of Molecular Structure (Theochem), 959, 66-74. https://doi.org/10.1016/j.theochem.2010.08.008
[51]
Bereket, G., Hür, E. and Ogretir, C. (2002) Quantum Chemical Studies on Someimidazole Derivatives as Corrosion Inhibitors for Iron in Acidic Medium. Journal of Molecular Structure Theochem, 578, 79-88. https://doi.org/10.1016/S0166-1280(01)00684-4
[52]
Zhang, S.G., Lei, W., Xia, M.Z. and Wang, F.Y. (2005) QSAR Study on N-Containing Corrosion Inhibitors: Quantum Chemical Approach Assisted by Topological Index. Journal of Molecular Structure: THEOCHEM, 732, 173-182. https://doi.org/10.1016/j.theochem.2005.02.091
[53]
Quraishi, M. and Sardar, R. (2003) Hector Bases—A New Class of Heterocyclic Corrosion Inhibitors for Mild Steel in Acid Solutions. Journal of Applied Electrochemistry, 33, 1163-1168. https://doi.org/10.1023/B:JACH.0000003865.08986.fb
[54]
Khalil, N. (2003) Quantum Chemical Approach of Corrosion Inhibition. Portugaliae Electrochimica Acta, 48, 2635-2640. https://doi.org/10.1016/S0013-4686(03)00307-4
[55]
Khaled, K.F. (2008) Molecular Simulation, Quantum Chemical Calculations and Electrochemical Studies for Inhibition of Mild Steel by Triazoles. Electrochimica Acta, 53, 3484-3492. https://doi.org/10.1016/j.electacta.2007.12.030
[56]
Saha, S.K., et al. (2015) Density Functional Theory and Molecular Dynamics Simulation Study on Corrosion Inhibition Performance of Mild Steel by Mercapto-Quinoline Schiff Base Corrosion Inhibitor. Physica E: Low-Dimensional Systems and Nanostructures, 66, 332-341. https://doi.org/10.1016/j.physe.2014.10.035
[57]
Chakraborty, T., Gazi, K. and Ghosh, D.C. (2010) Computation of the Atomic Radii through the Conjoint Action of the Effective Nuclear Charge and the Ionization Energy. Molecular Physics, 108, 2081-2092. https://doi.org/10.1080/00268976.2010.505208
[58]
Obot, I.B. and Gasem, Z.M. (2014) Theoretical Evaluation of Corrosion Inhibition Performance of Some Pyrazine Derivatives. Corrosion Science, 83, 359-366. https://doi.org/10.1016/j.corsci.2014.03.008
[59]
Lukovits, I., Kalman, E. and Zucchi, F. (2001) Corrosion Inhibitors-Correlation between Electronic Structure and Efficiency. Corrosion, 57, 3-8. https://doi.org/10.5006/1.3290328
[60]
Hohenberg, P. and Kohn, W. (1964) Inhogeneous Electron Gas. Physical Review, 136, B864-B871. https://doi.org/10.1103/PhysRev.136.B864
[61]
Nwankwo, H.U., Olasunkanmi, L.O. and Ebenso, E.E. (2017) Experimental, Quantum Chemical and Molecular Dynamic Simulations Studies on the Corrosion Inhibition of Mild Steel by Some Carbazole Derivatives. Scientific Report, 7, 2436-2446. https://doi.org/10.1038/s41598-017-02446-0
[62]
Martínez-Araya, J.I. (2015) Why Is the Dual Descriptor a More Accurate Local Reactivity Descriptor than Fukui Functions? Journal of Mathematical Chemistry, 53, 451-465. https://doi.org/10.1007/s10910-014-0437-7