The purpose of the current study is to assess the effectiveness and exactness of the new Modification of the Adomian Decomposition (MAD) method in providing fast converging numerical solutions for the Chen-Lee-Liu (CLL) equation. In addition, we are able to simulate the scheme and provide a comparative analysis with the help of some exact soliton solutions in optical fibers. Finally, the MAD method uncovered that the strategy is proven to be reliable due to the elevated level of accuracy and less computational advances, as demonstrated by a series of tables and figures.
References
[1]
Wazwaz, A.M. and El-Sayed, S.M. (2001) A New Modification of the Adomian Decomposition Method for Linear and Nonlinear Operators. Applied Mathematics and Computation, 122, 393-405. https://doi.org/10.1016/S0096-3003(00)00060-6
[2]
Wazwaz, A.M. (1999) A Reliable Modification of Adomian Decomposition Method. Applied Mathematics Computation, 102, 77-86.
https://doi.org/10.1016/S0096-3003(98)10024-3
[3]
Jin, C. and Liu, M. (2005) A New Modification of Adomian Decomposition Method for Solving a Kind of Evolution Equation. Applied Mathematics and Computation, 169, 953-962. https://doi.org/10.1016/j.amc.2004.09.072
[4]
Duan, J.S. and Rach, R. (2011) A New Modification of the Adomian Decomposition Method for Solving Boundary Value Problems for Higher Order Nonlinear Differential Equations. Applied Mathematics and Computation, 218, 4090-4118.
https://doi.org/10.1016/j.amc.2011.09.037
[5]
Chen, H.H., Lee, Y.C. and Liu, C.S. (1979) Integrability of Nonlinear Hamiltonian Systems by Inverse Scattering Method. Physica Scripta, 20, 490.
https://doi.org/10.1088/0031-8949/20/3-4/026
[6]
Triki, H., Babatin, M.M. and Biswas, A. (2017) Chirped Bright Solitons for Chen-Lee-Liu Equation in Optical Fibers and PCF. Optik-International Journal for Light and Electron Optics, 149, 300-303. https://doi.org/10.1016/j.ijleo.2017.09.031
[7]
Triki, H., Hamaizi, Y., Zhou, Q., Biswas, A., Ullah, M.Z., Moshokoa, S.P. and Belic, M. (2018) Chirped Dark and Gray Solitons for Chen-Lee-Liu Equation in Optical Fibers and PCF. Optik-International Journal for Light and Electron Optics, 155, 329-333. https://doi.org/10.1016/j.ijleo.2017.11.038
[8]
Triki, H., Hamaizi, Y., Zhou, Q., Biswas, A., Ullah, M.Z., Moshokoa, S.P. and Belic, M. (2018) Chirped Singular Solitons for Chen-Lee-Liu Equation in Optical Fibers and PCF. Optik-International Journal for Light and Electron Optics, 157, 156-160.
https://doi.org/10.1016/j.ijleo.2017.11.088
[9]
Mohammed, A.S.H.F., Bakodah, H.O., Banaja, M.A., Alshaery, A.A., Zhou, Q., Biswas, A., Belic, M.R., et al. (2019) Bright Optical Solitons of Chen-Lee-Liu Equation with Improved Adomian Decomposition Method. Optik-International Journal for Light and Electron Optics, 181, 964-970. https://doi.org/10.1016/j.ijleo.2018.12.177
[10]
Mohammed, A.S.H.F., Bakodah, H.O. and Banaja, M.A. (2019) Approximate Adomian Solutions to the Bright Optical Solitary Waves of the Chen-Lee-Liu Equation. MATTER: International Journal of Science and Technology, 5, 110-120.
https://doi.org/10.20319/mijst.2019.53.110120
[11]
González-Gaxiola, O. and Biswas, A. (2018) W-Shaped Optical Solitons of Chen-Lee-Liu Equation by Laplace-Adomian Decomposition Method. Optical and Quantum Electronics, 50, 314. https://doi.org/10.1007/s11082-018-1583-0
[12]
Al Qarni, A.A., Banaja, M.A., Bakodah, H.O., Alshaery, A.A., Majid, F.B. and Biswas, A. (2016) Optical Solitons in Birefringent Fibers: A Numerical Study. Journal of Computational and Theoretical Nanoscience, 13, 9001-9013.
https://doi.org/10.1166/jctn.2016.6077
[13]
Bakodah, H.O., Al Qarni, A.A., Banaja, M.A., Zhou, Q., Moshokoa, S.P. and Biswas, A. (2017) Bright and Dark Thirring Optical Solitons with Improved Adomian Decomposition Method. Optik-International Journal for Light and Electron Optics, 130, 1115-1123. https://doi.org/10.1016/j.ijleo.2016.11.123
[14]
Banaja, M.A., Al Qarni, A.A., Bakodah, H.O., Zhou, Q., Moshokoa, S.P. and Biswas, A. (2017) The Investigate of Optical Solitons in Cascaded System by Improved Adomian Decomposition Scheme. Optik-International Journal for Light and Electron Optics, 130, 1107-1114. https://doi.org/10.1016/j.ijleo.2016.11.125
[15]
Biazar, J., Babolian, E., Kember, G., Nouri, A. and Islam, R. (2003) An Alternate Algorithm for Computing Adomian Polynomials in Special Cases. Applied Mathematics and Computation, 138, 523-529.
https://doi.org/10.1016/S0096-3003(02)00174-1
[16]
Wazwaz, A.M. (2000) A New Algorithm for Calculating Adomian Polynomials for Nonlinear Operators. Applied Mathematics and Computation, 111, 33-51.
https://doi.org/10.1016/S0096-3003(99)00063-6
[17]
Nuruddeen, R.I., Muhammad, L., Nass, A.M. and Sulaiman, T.A. (2007) A Review of the Integral Transforms-Based Decomposition Methods and Their Applications in Solving Nonlinear PDEs. Palestine Journal of Mathematics, 7, 262-280.
[18]
Rach, R. (2008) A New Definition of the Adomian Polynomials, Kybernetes, 37, 910-955. https://doi.org/10.1108/03684920810884342
[19]
Nuruddeen, R.I. (2017) Elzaki Decomposition Method and Its Applications in Solving Linear and Nonlinear Schrodinger Equations. Sohag Journal of Mathematics, 4, 1-5. https://doi.org/10.18576/sjm/040201
[20]
Yin, F.K., Wang, Y.H. and Song, J.Q. (2013) Modified Laplace Decomposition Method for Lane-Emden Type Differential. International Journal of Applied Physics and Mathematics, 3, 98-102. https://doi.org/10.7763/IJAPM.2013.V3.184
[21]
Babolian, E. and Javadi, S. (2003) Restarted Adomian Method for Algebraic Equations. Applied Mathematics and Computation, 146, 533-541.
https://doi.org/10.1016/S0096-3003(02)00603-3