全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

ESBL Production and Multidrug Resistance of Salmonella Serovars Isolates in Benue State

DOI: 10.4236/ajmb.2020.103014, PP. 200-223

Keywords: ESBL, Salmonella, Serovars, Susceptibility

Full-Text   Cite this paper   Add to My Lib

Abstract:

Studies on ESBL-producing and multi-drug resistance of Salmonella serovars distributed in Benue State were investigated. A total of four hundred and twenty (420) clinical stool samples, seventy (70) from each local government area were randomly collected from selected hospitals and analyzed for the presence of Salmonella spp. The isolates were characterized using Gram staining and biochemical tests. The result of AP120E biochemical test strip which contained dehydrated bacterial media and biochemical reagents in twenty (20) separate compartments. The result was obtained by evaluation of the compartments due to observed changes in after 24 hours where others were read by adding up reagents (Ferric chloride, Kovacs V.P reagents). The results were analyzed afterwards in accordance with the manufacturer’s software and positive results with ≥89% potential were confirmed as Salmonella spp. Amplified plasmids derived from 18 Salmonella strains recognized were made up of 23,130 base pairs. ESBL (Extended-spectrum beta-lactamases) genes were located on the plasmids. Two of the ESBL genes found were TEM genes and CTX-M (415 bp). Strains such as S. enterica Typhimurium-CP014981.1, S. enterica Enteritidis-CP007325.2, S. enterica Typhimurium-CP024619.1, S. enterica Typhimurium-CP023166.1, S. bongori-FR877557 and S. enterica Enteritidis-TY1 possessed TEM genes where as S. enterica Heidelberg-CP019176.1, S. enterica Typhi-AL513382.1 and S. enterica Typhimurium-MH196335.1 possessed CTX-M. Antibiotic resistance testing was performed using Kirby-Bauer disc diffusion method. The overall percentage susceptibility of the eight antibiotics tested on Salmonella serovars isolates shows that GEN had the highest % susceptibility of 100% followed by NIT (72.2%) and COT (66.7%) before and after plasmid curing. % susceptibility was lower before curing than after curing in CXC, CHL and TET. It was low (5.6%) in ERY while AUG recorded 0% susceptibility. Differences observed in curing status were insignificant (T = 0.33, P > 0.05). The presence of ESBL-producing and multi-drug resistant Salmonella serovars indicates an infection which presents a foremost peril to public health since such infections may be intricate to take care of and may consequently result in death of the infected patients. Constant periodic examination and prevention of drug abuse of antibiotics will assist in ensuring that this trend is curtailed especially in developing nations

References

[1]  Bali, E.B., Acik, L. and Sultan, N. (2010) Phenotypic and Molecular Characterization of SHV, Spectrum Beta-Lactamase (CTX-M-3 Like) from India and Gene Association with Insertion Sequence ISEcp1. Microbiology Letters, 2, 237-241.
[2]  Fashae, K., Ogunsola, F., Aarestrup, F.M. and Hendriksen, R.S. (2010) Antimicrobial Susceptibility and Serovars of Salmonella from Chickens and Humans in Ibadan, Nigeria. Journal of Infectious Disease in Developing Countries, 4, 484-494.
https://doi.org/10.3855/jidc.909
[3]  Paterson, D.L.K.M., Hujer, A.M., Hujer, B., Yeiser, M.D., Bonomo, L.B. and Bonomo, R.A. (2003) Extended-Spectrum Beta-Lactamases in Klebsiella pneumoniae Bloodstream Isolates from Seven Countries: Dominance and Widespread Prevalence of SHV- and CTX-M-Type Beta-Lactamases. Antimicrobial Agents Chemotherapy, 47, 3554-3560.
https://doi.org/10.1128/AAC.47.11.3554-3560.2003
[4]  Kiratisin, P., Apisarnthanarak, A., Laesripa, C. and Saifon, P. (2008) Molecular Characterization and Epidemiology of Extended-Spectrum-Beta-Lactamase-Producing Escherichia coli and Klebsiella pneumoniae Isolates Causing Health Care-Associated Infection in Thailand, Where the CTX-M Family Is Endemic. Antimicrobial Agents Chemotherapy, 52, 2818-2824.
https://doi.org/10.1128/AAC.00171-08
[5]  Kariuki, S. and Dougan, G. (2014) Antibacterial Resistance in Sub-Saharan Africa: An Underestimated Emergency. Annals of New York Academy of Science, 1323, 43-55.
https://doi.org/10.1111/nyas.12380
[6]  Foley, S.L. and Lynne, A.M. (2008) Food Animal-Associated Salmonella Challenges: Pathogenicity and Antimicrobial Resistance. Journal of Animal Science, 86, E173-E187.
https://doi.org/10.2527/jas.2007-0447
[7]  Ohad, G., Erin, C.B. and Guntram, A.G. (2014) Same Species, Different Diseases: How and Why Typhoidal and Non Typhoidal Salmonella enterica Serovars Differ. PMC Frontier in Microbiology, 5, 391.
https://doi.org/10.3389/fmicb.2014.00391
[8]  Stoycheva, M.V. and Murdjeva, M.A. (2006) Antimicrobial Therapy of Salmonelloses-Current State and Perspectives. Folia Medicine, 48, 5-10.
[9]  Akinyemi, K.O., Phillip, W., Beyer, W. and Bohm, R. (2007) In-Vitro Antimicrobial Susceptibility Patterns of Salmonella enterica Serovars and Emergence of Salmonella Phage Type DT071 in a Suspected Community-Associated Outbreak in Lagos, Nigeria. Journal of Infection in Developing Countries, 1, 48-54.
[10]  Scallan, E., Hoekstra, R.M. and Angulo, F.J. (2011) Foodborne Illness Acquired in the United States-Major Pathogens. Emerging Infectious Disease, 17, 7-15.
https://doi.org/10.3201/eid1701.P11101
[11]  Alcaine, S.D., Warnick, L.D. and Wiedmann, M. (2007) Antimicrobial Resistance in Nontyphoidal Salmonella. Journal of Food Protocol, 70, 780-790.
https://doi.org/10.4315/0362-028X-70.3.780
[12]  Parry, C.M. and Threlfall, E.J. (2008) Antimicrobial Resistance in Typhoidal and Nontyphoidal Salmonellae. Current Opinion in Infectious Disease, 21, 531-538.
https://doi.org/10.1097/QCO.0b013e32830f453a
[13]  Ajiboye, R.M., Solberg, O.D., Lee, B.M., Raphael, E., Debroy, C. and Riley, L.W. (2009) Global Spread of Mobile Antimicrobial Drug Resistance Determinants in Human and Animal Escherichia coli and Salmonella Strains Causing Community-Acquired Infections. Clinical Infectious Diseases, 49, 365-371.
https://doi.org/10.1086/600301
[14]  Huehn, S., La Ragione, R.M., Anjum, M., Saunders, M., Woodward, M.J. and Bunge, C. (2010) Virulotyping and Antimicrobial Resistance Typing of Salmonella enterica Serovars Relevant to Human Health in Europe. Foodborne Pathogen Distribution, 7, 523-535.
https://doi.org/10.1089/fpd.2009.0447
[15]  Maurin, M. and Raoult, D. (2001) Use of Aminoglycosides in Treatment of Infections Due to Intracellular Bacteria. Antimicrobial Agents Chemotherapy, 45, 2977-2986.
https://doi.org/10.1128/AAC.45.11.2977-2986.2001
[16]  Schwarz, S., Kehrenberg, C. and Walsh, T.R. (2001) Use of Antimicrobial Agents in Veterinary Medicine and Food Animal Production. International Journal Antimicrobial Agents, 17, 431-437.
https://doi.org/10.1016/S0924-8579(01)00297-7
[17]  Arias, C.A. and Murray, B.E. (2012) The Rise of the Enterococcus: Beyond Vancomycin Resistance. Natural Review of Microbiology, 10, 266-278.
https://doi.org/10.1038/nrmicro2761
[18]  Ramirez, M.S. and Tolmasky, M.E. (2010) Aminoglycoside Modifying Enzymes. Drug Resistance Update, 13, 151-171.
https://doi.org/10.1016/j.drup.2010.08.003
[19]  Frye, J.G., Fedorka-Cray, P.J., Jackson, C.R. and Rose, M. (2008) Analysis of Salmonella enterica with Reduced Susceptibility to the Third-Generation Cephalosporin Ceftriaxone Isolated from U.S. Cattle during 2000-2004. Microbial Drug Resistance, 14, 251-258.
https://doi.org/10.1089/mdr.2008.0844
[20]  Glenn, L.M., Lindsey, R.L., Folster, J.P., Pecic, G., Boerlin, P., Gilmour, M.W., Harbottle, H., Zhao, S., McDermott, P.F. and Fedorka-Cray, P.J. (2013) Antimicrobial Resistance Genes in Multidrug-Resistant Salmonella enterica Isolated from Animals, Retail Meats, and Humans in the United States and Canada. Microbial Drug Resistance, 19, 175-184.
https://doi.org/10.1089/mdr.2012.0177
[21]  Lindsey, R.L., Frye, J.G., Fedorka-Cray, P.J. and Meinersmann, R.J. (2011) Microarray-Based Analysis of IncA/C Plasmid-Associated Genes from Multidrug-Resistant Salmonella enterica. Applied Environmental Microbiology, 77, 6991-6999.
https://doi.org/10.1128/AEM.00567-11
[22]  Prescott, J.F. (2000) Aminoglycosides and Aminocyclitols. In: Prescott, J.F., Baggot, J.D. and Walker, R.D., Eds., Antimicrobial Therapy in Veterinary Medicine, Iowa State University Press, Ames, 191-228.
[23]  Bush, K. (2008) Extended-Spectrum Beta-Lactamases in North America, 1987-2006. Clinical Microbiology and Infection, 14, 134-143.
https://doi.org/10.1111/j.1469-0691.2007.01848.x
[24]  Arlet, G., Barrett, T.J., Butaye, P., Cloeckaert, A., Mulvey, M.R. and White, D.G. (2006) Salmonella Resistant to Extended-Spectrum Cephalosporins: Prevalence and Epidemiology. Microbial Infection, 8, 1945-1954.
https://doi.org/10.1016/j.micinf.2005.12.029
[25]  Miriagou, V., Cornaglia, G., Edelstein, M., Galani, I., Giske, C.G. and Gniadkowski, M. (2010) Acquired Carbapenemases in Gram-Negative Bacterial Pathogens: Detection and Surveillance Issues. Clinical Microbial Infection, 16, 112-122.
https://doi.org/10.1111/j.1469-0691.2009.03116.x
[26]  Batchelor, M., Threlfall, E.J. and Liebana, E. (2005) Cephalosporin Resistance among Animal-Associated Enterobacteria: A Current Perspective. Expert Review of Anti Infectious Therapy, 3, 403-417.
https://doi.org/10.1586/14787210.3.3.403
[27]  Siu, L.K., Lu, P.L., Chen, J.Y., Lin, F.M. and Chang, S.C. (2003) High-Level Expression of ampC Beta-Lactamase Due to Insertion of Nucleotides between -10 and -35 Promoter Sequences in Escherichia coli Clinical Isolates: Cases Not Responsive to Extended-Spectrum-Cephalosporin Treatment. Antimicrobial Agents Chemotherapy, 47, 2138-2144.
https://doi.org/10.1128/AAC.47.7.2138-2144.2003
[28]  Falagas, M.E. and Karageorgopoulos, D.E. (2009) Extended-Spectrum Beta-Lactamase-Producing Organ-Isms. Journal of Hospital Infection, 73, 345-354.
https://doi.org/10.1016/j.jhin.2009.02.021
[29]  Walsh, C. (2000) Molecular Mechanisms That Confer Antibacterial Drug Resistance. Nature, 406, 775-781.
https://doi.org/10.1038/35021219
[30]  Nelson, J.M., Chiller, T.M., Powers, J.H. and Angulo, F.J. (2007) Fluoroquinolone-Resistant Campylobacter Species and the Withdrawal of Fluoroquinolones from Use in Poultry: A Public Health Success Story. Clinical Infectious Disease, 44, 977-980.
https://doi.org/10.1086/512369
[31]  Chen, S., Cui, S., McDermott, P.F., Zhao, S., White, D.G. and Paulsen, I. (2007) Contribution of Target Gene Mutations and Efflux to Decreased Susceptibility of Salmonella enteric Serovar Typhimurium to Fluoroquinolones and Other Antimicrobials. Antimicrobial Agents and Chemotherapy, 51, 535-542.
https://doi.org/10.1128/AAC.00600-06
[32]  Tankson, J.D., Fedorka-Cray, P.J., Jackson, C.R. and Headrick, M. (2006) Genetic Relatedness of a Rarely Isolated Salmonella: Salmonella enterica Serotype Niakhar from NARMS Animal Isolates. Journal of Antimicrobial Chemotherapy, 57, 190-198.
https://doi.org/10.1093/jac/dki439
[33]  O’Regan, E., Quinn, T., Frye, J.G., Pages, J.M., Porwollik, S., Fedorka-Cray, P.J., McClelland, M. and Fanning, S. (2010) Fitness Costs and Stability of a High-Level Ciprofloxacin Resistance Phenotype in Salmonella enterica Serotype Enteritidis: Reduced Infectivity Associated with Decreased Expression of Salmonella Pathogenicity Island 1 Genes. Antimicrobial Agents Chemotherapy, 54, 367-374.
https://doi.org/10.1128/AAC.00801-09
[34]  Cavaco, L.M. and Aarestrup, F.M. (2009) Evaluation of Quinolones for Use in Detection of Determinants of Acquired Quinolone Resistance, Including the New Transmissible Resistance Mechanisms qnrA, qnrB, qnrS, and aac (6’)Ib-cr, in Escherichia coli and Salmonella enterica and Determinations of Wild-Type Distributions. Journal of Clinical Microbiology, 47, 2751-2758.
https://doi.org/10.1128/JCM.00456-09
[35]  Paterson, D.L. (2006) Resistance in Gram-Negative Bacteria: Enterobacteriaceae. American Journal of Infection Control, 34, S20-S28.
https://doi.org/10.1016/j.ajic.2006.05.238
[36]  Walkty, A. (2016) Extended-Spectrum Beta-Lactamase Producing Escherichia coli: Increasing Incidence of a Resistant Pathogen. DSM Micro Notes. Clinical Microbiology Discipline Publication, Diagnostic Services Manitoba.
[37]  Carattoli, A. (2009) Resistance Plasmid Families in Enterobacteriaceae. Antimicrobial Agents Chemotherapy, 53, 2227-2238.
https://doi.org/10.1128/AAC.01707-08
[38]  Hyeon, J.Y., Chon, J.W., Hwang, I.G., Kwak, H.S., Kim, M.S., Kim, S.K., Choi, I.S., Song, C.S., Park, C. and Seo, K.H. (2011) Prevalence, Antibiotic Resistance, and Molecular Characterization of Salmonella Serovars in Retail Meat Products. Journal of Food Protocol, 74, 161-166.
https://doi.org/10.4315/0362-028X.JFP-10-327
[39]  Nwosu, I.L., Amadi, E.S., Nwanyanwu, C.E., Chikwendu, C.I. and Madu, C.I. (2014) The Prevalence of Extended Spectrum Beta-Lactamases (ESBLs) among Escherichia coli and Klebsiella Species Urinary Isolates from Abia State University Teaching Hospital (ABSUTH) Aba, Abia State Nigeria. International Journal of Microbiology and Mycology, 2, 20-28.
[40]  Nwanko, E.O., Magaji, N.S. and Tijjani, J. (2015) Antibiotic Susceptibility Pattern of Extended Spectrum Betalactamase (ESBL) Producers and Other Bacterial Pathogens in Kano, Nigeria. Tropical Journal of Pharmaceutical Research, 14, 1273-1278.
https://doi.org/10.4314/tjpr.v14i7.21
[41]  Skyberg, J.A., Logue, C.M. and Nolan, L.K. (2006) Virulence Genotyping of Salmonella sp. with Multiplex PCR. Avian Disease, 50, 77-81.
https://doi.org/10.1637/7417.1
[42]  Delaney, S., Murphy, R. and Walsh, F. (2018) A Comparison of Methods for the Extraction of Plasmids Capable of Conferring Antibiotic Resistance in a Human Pathogen from Complex Broiler Cecal Samples. Frontiers in Microbiology, 8.
https://doi.org/10.3389/fmicb.2018.01731
[43]  Hoffmann, M., Muruvanda, T., Allard, M.W., Korlach, J., Roberts, R.J. and Timme, R. (2013) Complete Genome Sequence of a Multidrug-Resistant Salmonella enterica Serovar Typhimurium var. 5-Strain Isolated from Chicken Breast. Genome Announcement, 1, e01068-13.
https://doi.org/10.1128/genomeA.01068-13
[44]  Jacoby, G.A. and Medeiros, A.A. (1991) More Extended Spectrum b-Lactamases. Antimicrobial Agents Chemotherapy, 35, 1697-1704.
https://doi.org/10.1128/AAC.35.9.1697
[45]  Bager, F. and Petersen, J. (1991) Sensitivity and Specificity of Different Methods for the Isolation of Salmonella from Pigs. Acta Veterinaria Scandinavica, 32, 473-481.
[46]  Bakeri, S.A., Yasin, R.M., Koh, Y.T., Puthucheary, S.D. and Thong, K.L. (2003) Genetic Diversity of Human Isolates of Salmonella enterica Serovar Enteritidis. Malaysia Journal Applied Microbiology, 95, 773-780.
https://doi.org/10.1046/j.1365-2672.2003.02033.x
[47]  Poirel, L., Karim, A., Nagarajan, S. and Nordmann, P. (2001) Plasmid-Mediated Extended-Spectrum Beta-Lactamase (CTX-M-3 Like) from India and Gene Association with Insertion Sequence ISEcp1. FEMS Microbiology Letters, 201, 237-241.
https://doi.org/10.1111/j.1574-6968.2001.tb10762.x
[48]  Cheesbrough, M. (2009) District Laboratory Practice in Tropical Countries. Part 1, 2nd Edition, Cambridge University Press, Cambridge, 58 p.
[49]  CLSI (Clinical and Laboratory Standards Institute) (2012) Performance Standards for Antimicrobial Susceptibility Testing. Approved Standard, Eleventh Edition.
[50]  Mather, A.E., Reid, S.W.J., Maskel, D.J., Parkhill, J., Fookes, M.C., Harris, S.R., Brown, D.J., Coia, J.E., Mulvey, M.R., Gilmour, M.W., Petrovska, L., de Pinna, E., Kuroda, M., Akiba, M., Izumiya, H., Connor, T.R., Suchard, M.A., Lemey, P., Mellor, D.J., Haydon, D.T. and Thomson, N.R. (2013) Distinguishable Epidemics of Multidrug-Resistant Salmonella Typhimurium DT104 in Different Hosts. Science, 341, 1514-1517.
https://doi.org/10.1126/science.1240578
[51]  Hemen, J.T., Johnson, J.T., Ambo, E.E., Ekam, V.S., Odey, M.O. and Fila, W.A. (2012) Multi-Antibiotic Resistance of Some Gram Negative Bacterial Isolates from Poultry Litters of Selected farm in Benue State. International Journal of Science and Technology, 2, 543-547.
[52]  Denyer, S.P., Hodges, N.A., Gorman, S.P. and Gilmore, B.F. (2011) Pharmaceutical Microbiology. 8th Edition, Wiley Blackwell Publishing House, New Delhi, 200-229.
[53]  Sallam, K.I., Mohammed, M.A., Hassan, M.A. and Tamura, T. (2014) Prevalence, Molecular Identification and Antimicrobial Resistance Profile of Salmonella Serovars Isolated from Retail Beef Products in Mansoura, Egypt. Food Control, 38, 209-214.
https://doi.org/10.1016/j.foodcont.2013.10.027
[54]  Lu, Y., Zhao, H., Sun, J., Liu, Y., Zhou, X. and Beier, R.C. (2014) Characterization of Multidrug-Resistant Salmonella enterica Serovars Indiana and Enteritidis from Chickens in Eastern China. PLoS ONE, 9, e96050.
https://doi.org/10.1371/journal.pone.0096050
[55]  Eddra, A., Filali, F.R., Karraouan, B., El-Allaoui, A., Aboulkacem, A. and Bouchrif, B. (2017) Prevalence, Molecular and Antimicrobial Resistance of Salmonella Isolated from Sausages in Meknes, Morocco. Microbial Pathogens, 105, 340-345.
https://doi.org/10.1016/j.micpath.2017.02.042
[56]  World Health Organisation (WHO) (2018) Typhoid Facts Sheet.
http://www.who.int/mediacentre/factsheets/typhoid
[57]  Kingsley, R.A. and Baumler, A.J. (2000) Host Adaptation and the Emergence of Infectious Disease: The Salmonella Paradigm. Molecular Microbiology, 36, 1006-1014.
https://doi.org/10.1046/j.1365-2958.2000.01907.x
[58]  Uzzau, S., Brown, D.J., Wallis, T., Rubino, S., Leori, G., Bernard, S., Casadesus, J. and Olsen, J.E. (2000) Host Adapted Serotypes of Salmonella enterica. Epidemiology of Infectious Diseases, 125, 229-255.
https://doi.org/10.1017/S0950268899004379
[59]  Ziech, R.E., Lampugnani, C., Perin, A.P., Sereno, M.J., Sfaciotte, R.A.P., Viana, C., Soares, V.M., Pinto, J.P.A.N. and dos Santos Bersot, L. (2016) Multidrug Resistance and ESBL-Producing Salmonella spp. Isolated from Broiler Processing Plants. Brazilian Journal of Microbiology, 47, 191-195.
https://doi.org/10.1016/j.bjm.2015.11.021
[60]  Zhang, C.-Z., Ding, X.-M., Lin, X.-L., Sun, R.-Y., Lu, Y.-W., Cai, R.-M., Webber, M.A., Ding, H.-Z. and Jiang, H.-X. (2019) The Emergence of Chromosomally Located blaCTX-M-55 in Salmonella from Foodborne Animals in China. Frontiers in Microbiology, 10, 1268.
https://doi.org/10.3389/fmicb.2019.01268
[61]  Abdullahi, M., Olonitola, S.O., Umoh, V.J. and Inabo, I.H. (2014) Antibacterial Resistance Profile and PCR Detection of Antibiotic Resistance Genes in Salmonella Serovars Isolated from Blood Samples of Hospitalized Subjects in Kano, Northwest, Nigeria. British Microbiology Research Journal, 5, 245-256.
https://doi.org/10.9734/BMRJ/2015/9711

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133