全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Partitioning of Any Infinite Set with the Aid of Non-Surjective Injective Maps and the Study of a Remarkable Semigroup

DOI: 10.4236/ojdm.2020.103008, PP. 74-88

Keywords: Partitioning, Non-Surjective, Injective, Infinite Set, Fixed Points, Lattice Structure

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this article, we will present a particularly remarkable partitioning method of any infinite set with the aid of non-surjective injective maps. The non-surjective injective maps from an infinite set to itself constitute a semigroup for the law of composition bundled with certain properties allowing us to prove the existence of remarkable elements. Not to mention a compatible equivalence relation that allows transferring the said law to the quotient set, which can be provided with a lattice structure. Finally, we will present the concept of Co-injectivity and some of its properties.

References

[1]  Berhuy, G. (2002) Algébre: le grand combat. Clavage et Mounet, Montrouge.
[2]  Dehornoy, P. (2017) La théorie des ensembles. Clavage et Mounet, Montrouge.
[3]  Gourdon, X. (1994) Les maths en tête Algèbre. Ellipses, Paris.
[4]  Jacobson, N. (2009) Basic Algebra I. Dover Publication Inc., New York.
[5]  Guégand, T.D.J. (1999) Algèbre en classe préparatoires MP*. Ellipses, Paris.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133