全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

A Fluorescent Cell-Based Technique for Monitoring Efflux of MRP4

DOI: 10.4236/ajmb.2020.103013, PP. 188-199

Keywords: Efflux Pump, Drug Resistance, ABC-Transporter, HEK 293, Fluorescence Assay

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background: Overexpression of efflux pumps is the drug resistance and adaptation mechanism employed by some eukaryotes and bacteria to transport endogenous and chemotherapeutic compounds from the intracellular to the extracellular environment. Aim: The study aimed at establishing a fluorescent cell-based assay to monitor the efflux activities of an ABC-transporter, multi-drug resistance protein 4 (MRP4). Methods: DH5α competent E. coli cells were transformed with pcDNA-MRP4 by the heat-shock process. The presence of the MRP4 gene was analyzed by the digestion of plasmid using EcoRI and analyzed on a 1% agarose gel. HEK 293 cells were transfected with purified pcDNA-MRP4 under optimized conditions using a Polyethylenimine (PEI) protocol. The level of MRP4 in the HEK 293 cells was characterized by western blotting analysis using M4I-10 anti-MRP4 and anti-Rat IgG (whole molecule)-Alkaline phosphatase antibodies. The fluorescent uptake study was performed by the incubation of 0.02 mM 8-[fluo-cAMP] with the MRP4-transfected and control HEK 293 cells for 1 h. The level of fluorescence was analyzed using fluorescence microscopy and spectrometer. Results: The agarose gel analysis showed a plasmid of 9.4 kb and restriction product of 5 kb, which correspond with the pcDNA and MRP4 sizes respectively. The western blot results of the transfection showed 4 μg pcDNA-MRP4 and the N/P ratio of 9 was the optimized condition to transfect our HEK 293 cells as it showed the broadest band. In the efflux studies, the fluorescence images of the MRP4-transfected HEK 293 cells were very low compared to the untransfected control. The level of fluorescence accumulation was significantly (P ≤ 0.0001) higher 228.6 ± 13.1 RFU in the untransfected cells than the MRP4-transfected cells 8.6 ± 1.8 RFU. Conclusion: The higher levels of fluorescence detected in the control in both the fluorescent microscopy and spectrophotometer showed that MRP4-transfected cells had effluxed the 8-[fluo-cAMP] substrate out of the cell. This method could be employed in the detection of MRP4 functions in bacteria and cancer cells.

References

[1]  Blair, J.M., Bavro, V.N., Ricci, V., Modi, V., Cacciotto, P., Kleinekathofer, U., Ruggerone, P., Vargiu, A.V., Baylay, A.J. and Smith, H.E. (2015) AcrB Drug-Binding Pocket Substitution Confers Clinically Relevant Resistance and Altered Substrate Specificity. Proceedings of the National Academy of Sciences of the United States of America, 112, 3511-3516.
https://doi.org/10.1073/pnas.1419939112
[2]  Borst, P., de Wolf, C. and van de Wetering, K. (2006) Multidrug Resistance-Associated Proteins 3, 4, and 5. Pflügers Archiv—European Journal of Physiology, 453, 661-673.
https://doi.org/10.1007/s00424-006-0054-9
[3]  Russel, F.G., Koenderink, J.B. and Masereeuw, R. (2008) Multidrug Resistance Protein 4 (MRP4/ABCC4): A Versatile Efflux Transporter for Drugs and Signalling Molecules. Trends in Pharmacological Sciences, 29, 200-207.
https://doi.org/10.1016/j.tips.2008.01.006
[4]  Ritter, C.A., Jedlitschky, G., Meyer zu Schwabedissen, H., Grube, M., Kock, K. and Kroemer, H.K. (2005) Cellular Export of Drugs and Signaling Molecules by the ATP-Binding Cassette Transporters MRP4 (ABCC4) and MRP5 (ABCC5). Drug Metabolism Reviews, 37, 253-278.
https://doi.org/10.1081/DMR-200047984
[5]  Ravna, A.W. and Sager, G. (2008) Molecular Model of the Outward Facing State of the Human Multidrug Resistance Protein 4 (MRP4/ABCC4). Bioorganic & Medicinal Chemistry Letters, 18, 3481-3483.
https://doi.org/10.1016/j.bmcl.2008.05.047
[6]  Ravna, A., Sylte, I. and Sager, G. (2009) Binding Site of ABC Transporter Homology Models Confirmed by ABCB1 Crystal Structure. Theoretical Biology and Medical Modelling, 6, 1-12.
https://doi.org/10.1186/1742-4682-6-20
[7]  Smith, P.C., Karpowich, N., Millen, L., Moody, E.J., Rosen, J., Thomas, J.P. and Hunt, F.J. (2002) ATP Binding to the Motor Domain from an ABC Transporter Drives Formation of a Nucleotide Sandwich Dimer. Molecular Cell, 10, 139-149.
https://doi.org/10.1016/S1097-2765(02)00576-2
[8]  Slot, A.J., Molinski, S.V. and Cole, S.P. (2011) Mammalian Multidrug-Resistance Proteins (MRPs). Essays in Biochemistry, 50, 179-207.
https://doi.org/10.1042/bse0500179
[9]  Wen, J., Luo, J., Huang, W., Tang, J., Zhou, H. and Zhang, W. (2015) The Pharmacological and Physiological Role of Multidrug-Resistant Protein 4. Journal of Pharmacology and Experimental Therapeutics, 354, 358-375.
https://doi.org/10.1124/jpet.115.225656
[10]  Schuetz, J.D., Connelly, M.C., Sun, D., Paibir, S.G., Flynn, P.M., Srinivas, R.V., Kumar, A. and Fridland, A. (1999) MRP4: A Previously Unidentified Factor in Resistance to Nucleoside-Based Antiviral Drugs. Nature Medicine, 5, 1048-1051.
https://doi.org/10.1038/12487
[11]  Lechner, C., Reichel, V., Moenning, U., Reichel, A. and Fricker, G. (2010) Development of a Fluorescence-Based Assay for Drug Interactions with Human Multidrug Resistance Related Protein (MRP2; ABCC2) in MDCKII-MRP2 Membrane Vesicles. European Journal of Pharmaceutics and Biopharmaceutics, 75, 284-290.
https://doi.org/10.1016/j.ejpb.2010.03.008
[12]  Smeets, P.H.E., Van Aubel, R.A.M.H., Wouterse, A.C., Van den Heuvel, J.J.M.W. and Russel, F.G.M. (2004) Contribution of Multidrug Resistance Protein 2 (MRP2/ABCC2) to the Renal Excretion of p-Aminohippurate (PAH) and Identification of MRP4 (ABCC4) as a Novel PAH Transporter. Journal of the American Society of Nephrology, 15, 2828-2835.
https://doi.org/10.1097/01.ASN.0000143473.64430.AC
[13]  Wielinga, P.R., Van, D.H.I., Reid, G.B.J.H., Wijnholds, J. and Borst, P. (2003) Characterization of the MRP4- and MRP5-Mediated Transport of Cyclic Nucleotides from Intact Cells. The Journal of Biological Chemistry, 278, 17664-17671.
https://doi.org/10.1074/jbc.M212723200
[14]  Reichel, V., Masereeuw, R., van den Heuvel, J.J.M.W., Miller, D.S. and Fricker, G. (2007) Transport of a Fluorescent cAMP Analog in Teleost Proximal Tubules. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 293, 2382-2389.
https://doi.org/10.1152/ajpregu.00029.2007
[15]  Piddock, L.J. (2006) Multidrug-Resistance Efflux Pumps? Not Just for Resistance. Nature Review in Microbiology, 4, 629.
https://doi.org/10.1038/nrmicro1464
[16]  Poole, K. (2007) Efflux Pumps as Antimicrobial Resistance Mechanisms. Annals of Medicine, 39, 162-176.
https://doi.org/10.1080/07853890701195262
[17]  Iyer, R. and Erwin, A.L. (2015) Direct Measurement of Efflux in Pseudomonas aeruginosa Using an Environment-Sensitive Fluorescent Dye. Research in Microbiology, 166, 516-524.
https://doi.org/10.1016/j.resmic.2015.06.006
[18]  Martins, A., Machado, L., Costa, S., Cerca, P., Spengler, G., Viveiros, M. and Amaral, L. (2011) Role of Calcium in the Efflux System of Escherichia coli. International Journal of Antimicrobial Agents, 37, 410-414.
https://doi.org/10.1016/j.ijantimicag.2011.01.010
[19]  Paixao, L., Rodrigues, L., Couto, I., Martins, M., Fernandes, P., de Carvalho, C.C., Monteiro, G.A., Sansonetty, F., Amaral, L. and Viveiros, M. (2009) Fluorometric Determination of Ethidium Bromide Efflux Kinetics in Escherichia coli. Journal of Biological Engineering, 3, 18.
https://doi.org/10.1186/1754-1611-3-18
[20]  Bednarczyk, D. (2010) Fluorescence-Based Assays for the Assessment of Drug Interaction with the Human Transporters OATP1B1 and OATP1B3. Analytical Biochemistry, 405, 50-58.
https://doi.org/10.1016/j.ab.2010.06.012
[21]  Barik, S., Saini, M., Rana, M. and Gupta, P.K. (2019) Multidrug Resistance Protein 4 (MRP4) Is Expressed as Transcript Variants in Both Gallus domesticus and Gyps himalyanesis. Gene, 689, 172-182.
https://doi.org/10.1016/j.gene.2018.12.014
[22]  Chien, J., Wolf, F.W., Grosche, S., Yosef, N., Garriga, G. and Morck, C. (2019) The Enigmatic Canal-Associated Neurons Regulate Caenorhabditis elegans Larval Development through a cAMP Signaling Pathway. Genetics, 213, 1465-1478.
https://doi.org/10.1534/genetics.119.302628
[23]  Takeuchi, K., Shibata, M., Kashiyama, E. and Umehara, K. (2012) Expression Levels of Multidrug Resistance-Associated Protein 4 (MRP4) in Human Leukemia and Lymphoma Cell Lines, and the Inhibitory Effects of the MRP-Specific Inhibitor MK-571 on Methotrexate Distribution in Rats. Experimental and Therapeutic Medicine, 4, 524-532.
https://doi.org/10.3892/etm.2012.627
[24]  van Aubel, R.A., Smeets, P.H., Peters, J.G., Bindels, R.J. and Russel, F.G. (2002) The MRP4/ABCC4 Gene Encodes a Novel Apical Organic Anion Transporter in Human Kidney Proximal Tubules: Putative Efflux Pump for Urinary cAMP and cGMP. Journal of the American Society of Nephrology, 13, 595-603.
[25]  Soto, S.M. (2013) Role of Efflux Pumps in the Antibiotic Resistance of Bacteria Embedded in a Biofilm. Virulence, 4, 223-229.
https://doi.org/10.4161/viru.23724
[26]  Shriram, V., Khare, T., Bhagwat, R., Shukla, R. and Kumar, V. (2018) Inhibiting Bacterial Drug Efflux Pumps via Phyto-Therapeutics to Combat Threatening Antimicrobial Resistance. Frontiers in Microbiology, 9, 2990.
https://doi.org/10.3389/fmicb.2018.02990
[27]  Zhao, Q.Q., Chen, J.L., Lv, T.F., He, C.X., Tang, G.P., Liang, W.Q., Tabata, Y. and Gao, J.Q. (2009) N/P Ratio Significantly Influences the Transfection Efficiency and Cytotoxicity of a Polyethylenimine/Chitosan/DNA Complex. Biological and Pharmaceutical Bulletin, 32, 706-710.
https://doi.org/10.1248/bpb.32.706
[28]  Densmore, C.L., Orson, F.M., Xu, B., Kinsey, B.M., Waldrep, J.C., Hua, P., Bhogal, B. and Knight, V. (2000) Aerosol Delivery of Robust Polyethyleneimine-DNA Complexes for Gene Therapy and Genetic Immunization. Molecular Therapy, 1, 180-188.
https://doi.org/10.1006/mthe.1999.0021

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133