全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

STAT1 and STAT2 Null Cells Are Resistant to RNA-Induced Apoptosis Due to Deficiency in Constitutive and Inducible Apoptosis-Regulating Genes

DOI: 10.4236/ajmb.2020.103012, PP. 165-187

Keywords: STAT1, STAT2, Apoptosis, Bacterial RNA

Full-Text   Cite this paper   Add to My Lib

Abstract:

Although much progress has been made in identifying the signaling pathways that mediate viral RNA-induced apoptosis and activation of interferon-stimulated genes, the role that bacterial RNA plays in regulating these responses has remained undetermined. Herein, we identified bacterial RNA as a novel inducer of the apoptotic cell death. Unlike the parental cells, STAT1 and STAT2 mutants display apoptotic defects which were reversed by restoring the expression of wild type proteins. While STAT1 mutants lacking tyrosine-701 or a functional SH2 domain were effective as the wild-type protein in restoring the apoptotic response, the mutant carrying a point mutation at serine-727 of STAT1 was resistant to bacterial RNA-induced apoptosis. We also determined that the lack of apoptosis in the STAT1 and STAT2 mutants was correlated with the constitutive and inducible activation of apoptosis regulating proteins. Furthermore, we show that bacterial RNA induces transcriptional activation of STAT1, STAT2, IRF1, and ISGF3, which was impaired in STAT1 or STAT2 mutants. These observations suggested that the participation of STATs in regulating the apoptotic response is independent of their downstream functions as cytokine-induced transcriptional activators. In addition to bacterial immunity, the results presented here may also have implications in cellular pathophysiology and RNA-based therapy.

References

[1]  Bauer, S., Pigisch, S., Hangel, D., Kaufmann, A. and Hamm, S. (2008) Recognition of Nucleic Acid and Nucleic Acid Analogs by Toll-Like Receptors 7, 8 and 9. Immunobiology, 213, 315-328.
https://doi.org/10.1016/j.imbio.2007.10.010
[2]  Akira, S. and Hemmi, H. (2003) Recognition of Pathogen-Associated Molecular Patterns by TLR Family. Immunology Letters, 85, 85-95.
https://doi.org/10.1016/S0165-2478(02)00228-6
[3]  Alexopoulou, L. and Kontoyiannis, D. (2005) Intestinal Epithelial Barrier and Mucosal Immunity. Cellular and Molecular Life Sciences, 62, 1349-1358.
https://doi.org/10.1007/s00018-005-5039-x
[4]  Janssens, S. and Beyaert, R. (2003) Role of Toll-Like Receptors in Pathogen Recognition. Clinical Microbiology Reviews, 16, 637-646.
https://doi.org/10.1128/CMR.16.4.637-646.2003
[5]  Diebold, S.S., Montoya, M., Unger, H., Alexopoulou, L., Roy, P., Haswell, L.E., Al-Shamkhani, A., Flavell, R., Borrow, P. and Reis e Sousa, C. (2003) Viral Infection Switches Non-Plasmacytoid Dendritic Cells into High Interferon Producers. Nature, 424, 324-328.
https://doi.org/10.1038/nature01783
[6]  Alexopoulou, L., Holt, A.C., Medzhitov, R. and Flavell, R.A. (2001) Recognition of Double-Stranded RNA and Activation of NF-kappaB by Toll-Like Receptor 3. Nature, 413, 732-738.
https://doi.org/10.1038/35099560
[7]  Koski, G.K., Kariko, K., Xu, S., Weissman, D., Cohen, P.A. and Czerniecki, B.J. (2004) Cutting Edge: Innate Immune System Discriminates between RNA Containing Bacterial versus Eukaryotic Structural Features That Prime for High-Level IL-12 Secretion by Dendritic Cells. The Journal of Immunology, 172, 3989-3993.
https://doi.org/10.4049/jimmunol.172.7.3989
[8]  Kariko, K., Buckstein, M., Ni, H. and Weissman, D. (2005) Suppression of RNA Recognition by Toll-Like Receptors: The Impact of Nucleoside Modification and the Evolutionary Origin of RNA. Immunity, 23, 165-175.
https://doi.org/10.1016/j.immuni.2005.06.008
[9]  Hamm, S., Heit, A., Koffler, M., Huster, K.M., Akira, S., Busch, D.H., Wagner, H. and Bauer, S. (2007) Immunostimulatory RNA Is a Potent Inducer of Antigen-Specific Cytotoxic and Humoral Immune Response in Vivo. International Immunology, 19, 297-304.
https://doi.org/10.1093/intimm/dxl146
[10]  Bourquin, C., Schmidt, L., Hornung, V., Wurzenberger, C., Anz, D., Sandholzer, N., Schreiber, S., Voelkl, A., Hartmann, G. and Endres, S. (2007) Immunostimulatory RNA Oligonucleotides Trigger an Antigen-Specific Cytotoxic T-Cell and IgG2a Response. Blood, 109, 2953-2960.
https://doi.org/10.1182/blood-2006-07-033258
[11]  Lau, C.M., Broughton, C., Tabor, A.S., Akira, S., Flavell, R.A., Mamula, M.J., Christensen, S.R., Shlomchik, M.J., Viglianti, G.A., Rifkin, I.R. and Marshak-Rothstein, A. (2005) RNA-Associated Autoantigens Activate B Cells by Combined B Cell Antigen Receptor/Toll-Like Receptor 7 Engagement. Journal of Experimental Medicine, 202, 1171-1177.
https://doi.org/10.1084/jem.20050630
[12]  Kanneganti, T.D., Ozoren, N., Body-Malapel, M., Amer, A., Park, J.H., Franchi, L., Whitfield, J., Barchet, W., Colonna, M., Vandenabeele, P., Bertin, J., Coyle, A., Grant, E.P., Akira, S. and Nunez, G. (2006) Bacterial RNA and Small Antiviral Compounds Activate Caspase-1 through Cryopyrin/Nalp3. Nature, 440, 233-236.
https://doi.org/10.1038/nature04517
[13]  Kanneganti, T.D., Body-Malapel, M., Amer, A., Park, J.H., Whitfield, J., Franchi, L., Taraporewala, Z.F., Miller, D., Patton, J.T., Inohara, N. and Nunez, G. (2006) Critical Role for Cryopyrin/Nalp3 in Activation of Caspase-1 in Response to Viral Infection and Double-Stranded RNA. The Journal of Biological Chemistry, 281, 36560-36568.
https://doi.org/10.1074/jbc.M607594200
[14]  Muruve, D.A., Petrilli, V., Zaiss, A.K., White, L.R., Clark, S.A., Ross, P.J., Parks, R.J. and Tschopp, J. (2008) The Inflammasome Recognizes Cytosolic Microbial and Host DNA and Triggers an Innate Immune Response. Nature, 452, 103.
https://doi.org/10.1038/nature06664
[15]  Kato, H., Takeuchi, O., Sato, S., Yoneyama, M., Yamamoto, M., Matsui, K., Uematsu, S., Jung, A., Kawai, T., Ishii, K.J., Yamaguchi, O., Otsu, K., Tsujimura, T., Koh, C.S., Reis e Sousa, C., Matsuura, Y., Fujita, T. and Akira, S. (2006) Differential Roles of MDA5 and RIG-I Helicases in the Recognition of RNA Viruses. Nature, 441, 101-105.
https://doi.org/10.1038/nature04734
[16]  Hornung, V., Ellegast, J., Kim, S., Brzozka, K., Jung, A., Kato, H., Poeck, H., Akira, S., Conzelmann, K.K., Schlee, M., Endres, S. and Hartmann, G. (2006) 5’-Triphosphate RNA Is the Ligand for RIG-I. Science (New York, NY), 314, 994-997.
https://doi.org/10.1126/science.1132505
[17]  Williams, B.R.G. (1995) The Role of the dsRNA-Activated Kinase, PKR, in Signal Transduction. Seminars in Virology, 6, 191-202.
https://doi.org/10.1006/smvy.1995.0024
[18]  Gitlin, L., Barchet, W., Gilfillan, S., Cella, M., Beutler, B., Flavell, R.A., Diamond, M.S. and Colonna, M. (2006) Essential Role of mda-5 in Type I IFN Responses to Polyriboinosinic: Polyribocytidylic Acid and Encephalomyocarditis Picornavirus. Proceedings of the National Academy of Sciences of the United States of America, 103, 8459-8464.
https://doi.org/10.1073/pnas.0603082103
[19]  Shuai, K., Ziemiecki, A., Wilks, A.F., Harpur, A.G., Sadowski, H.B., Gilman, M.Z. and Darnell, J.E. (1993) Polypeptide Signalling to the Nucleus through Tyrosine Phosphorylation of Jak and Stat Proteins. Nature, 366, 580-583.
https://doi.org/10.1038/366580a0
[20]  Silvennoinen, O., Ihle, J.N., Schlessinger, J. and Levy, D.E. (1993) Interferon-Induced Nuclear Signalling by Jak Protein Tyrosine Kinases. Nature, 366, 583-585.
https://doi.org/10.1038/366583a0
[21]  Muller, M., Laxton, C., Briscoe, J., Schindler, C., Improta, T., Darnell, J.E., Stark, G.R. and Kerr, I.M. (1993) Complementation of a Mutant Cell Line: Central Role of the 91 kDa Polypeptide of ISGF3 in the Interferon-Alpha and -Gamma Signal Transduction Pathways. EMBOJ, 12, 4221-4228.
https://doi.org/10.1002/j.1460-2075.1993.tb06106.x
[22]  Fu, X.Y., Schindler, C., Improta, T., Aebersold, R. and Darnell, J.E. (1992) The Proteins of ISGF-3, the Interferon Alpha-Induced Transcriptional Activator, Define a Gene Family Involved in Signal Transduction. Proceedings of the National Academy of Sciences of the United States of America, 89, 7840-7843.
https://doi.org/10.1073/pnas.89.16.7840
[23]  Nallagatla, S.R., Hwang, J., Toroney, R., Zheng, X., Cameron, C.E. and Bevilacqua, P.C. (2007) 5’-Triphosphate-dependent Activation of PKR by RNAs with Short Stem-Loops. Science, 318, 1455-1458.
https://doi.org/10.1126/science.1147347
[24]  Kumar, A., Commane, M., Flickinger, T.W., Horvath, C.M. and Stark, G.R. (1997) Defective TNF-Alpha-Induced Apoptosis in STAT1-Null Cells Due to Low Constitutive Levels of Caspases. Science, 278, 1630-1632.
https://doi.org/10.1126/science.278.5343.1630
[25]  McKendry, R., John, J., Flavell, D., Muller, M., Kerr, I.M. and Stark, G.R. (1991) High-Frequency Mutagenesis of Human Cells and Characterization of a Mutant Unresponsive to Both Alpha and Gamma Interferons. Proceedings of the National Academy of Sciences of the United States of America, 88, 11455-11459.
https://doi.org/10.1073/pnas.88.24.11455
[26]  Pellegrini, S., John, J., Shearer, M., Kerr, I.M. and Stark, G.R. (1989) Use of a Selectable Marker Regulated by Alpha Interferon to Obtain Mutations in the Signaling Pathway. Molecular and Cellular Biology, 9, 4605-4612.
https://doi.org/10.1128/MCB.9.11.4605
[27]  Kumar, A., Kumar, A., Michael, P., Brabant, D., Parissenti, A.M., Ramana, C.V., Xu, X. and Parrillo, J.E. (2005) Human Serum from Patients with Septic Shock Activates Transcription Factors STAT1, IRF1, and NF-κB and Induces Apoptosis in Human Cardiac Myocytes. The Journal of Biological Chemistry, 280, 42619-42626.
https://doi.org/10.1074/jbc.M508416200
[28]  Herrmann, M., Lorenz, H.M., Voll, R., Grunke, M., Woith, W. and Kalden, J.R. (1994) A Rapid and Simple Method for the Isolation of Apoptotic DNA Fragments. Nucleic Acids Research, 22, 5506-5507.
https://doi.org/10.1093/nar/22.24.5506
[29]  Shuai, K., Stark, G.R., Kerr, I.M. and Darnell, J.E. (1993) A Single Phosphotyrosine Residue of Stat91 Required for Gene Activation by Interferon-Gamma. Science, 261, 1744-1746.
https://doi.org/10.1126/science.7690989
[30]  Wen, Z., Zhong, Z. and Darnell, J.E. (1995) Maximal Activation of Transcription by Stat1 and Stat3 Requires Both Tyrosine and Serine Phosphorylation. Cell, 82, 241-250.
https://doi.org/10.1016/0092-8674(95)90311-9
[31]  Heim, M.H., Kerr, I.M., Stark, G.R. and Darnell, J.E. (1995) Contribution of STAT SH2 Groups to Specific Interferon Signaling by the Jak-STAT Pathway. Science, 267, 1347-1349.
https://doi.org/10.1126/science.7871432
[32]  Schindler, C., Fu, X.Y., Improta, T., Aebersold, R. and Darnell, J.E. (1992) Proteins of Transcription Factor ISGF-3: One Gene Encodes the 91- and 84-kDa ISGF-3 Proteins That Are Activated by Interferon alpha. Proceedings of the National Academy of Sciences of the United States of America, 89, 7836-7839.
https://doi.org/10.1073/pnas.89.16.7836
[33]  Fulda, S. and Debatin, K.M. (2002) IFNgamma Sensitizes for Apoptosis by Upregulating caspase-8 Expression through the Stat1 Pathway. Oncogene, 21, 2295-2308.
https://doi.org/10.1038/sj.onc.1205255
[34]  Chin, Y.E., Kitagawa, M., Kuida, K., Flavell, R.A. and Fu, X.Y. (1997) Activation of the STAT Signaling Pathway Can Cause Expression of Caspase-1 and Apoptosis. Molecular and Cellular Biology, 17, 5328-5337.
https://doi.org/10.1128/MCB.17.9.5328
[35]  Muller, M., Briscoe, J., Laxton, C., Guschin, D., Ziemiecki, A., Silvennoinen, O., Harpur, A.G., Barbieri, G., Witthuhn, B.A. and Schindler, C. (1993) The Protein Tyrosine Kinase JAK1 Complements Defects in Interferon-α/β and -γ Signal Transduction. Nature, 366, 129-135.
https://doi.org/10.1038/366129a0
[36]  Rodig, S.J., Meraz, M.A., White, J.M., Lampe, P.A., Riley, J.K., Arthur, C.D., King, K.L., Sheehan, K.C., Yin, L., Pennica, D., Johnson, E.M. and Schreiber, R.D. (1998) Disruption of the Jak1 Gene Demonstrates Obligatory and Nonredundant Roles of the Jaks in Cytokine-Induced Biologic Responses. Cell, 93, 373-383.
https://doi.org/10.1016/S0092-8674(00)81166-6
[37]  Matin, S.F., Rackley, R.R., Sadhukhan, P.C., Kim, M.S., Novick, A.C. and Bandyopadhyay, S.K. (2001) Impaired Alpha-Interferon Signaling in Transitional Cell Carcinoma: Lack of p48 Expression in 5637 Cells. Cancer Research, 61, 2261-2266.
[38]  Wong, L.H., Krauer, K.G., Hatzinisiriou, I., Estcourt, M.J., Hersey, P., Tam, N.D., Edmondson, S., Devenish, R.J. and Ralph, S.J. (1997) Interferon-Resistant Human Melanoma Cells Are Deficient in ISGF3 Components, STAT1, STAT2, and p48-ISGF3gamma. The Journal of Biological Chemistry, 272, 28779-28785.
https://doi.org/10.1074/jbc.272.45.28779
[39]  Leung, S., Qureshi, S.A., Kerr, I.M., Darnell, J.E. and Stark, G.R. (1995) Role of STAT2 in the Alpha Interferon Signaling Pathway. Molecular and Cellular Biology, 15, 1312-1317.
https://doi.org/10.1128/MCB.15.3.1312
[40]  Chatterjee-Kishore, M., Wright, K.L., Ting, J.P. and Stark, G.R. (2000) How Stat1 Mediates Constitutive Gene Expression: A Complex of Unphosphorylated Stat1 and IRF1 Supports Transcription of the LMP2 Gene. EMBOJ, 19, 4111-4122.
https://doi.org/10.1093/emboj/19.15.4111
[41]  Du, Z., Fan, M., Kim, J.G., Eckerle, D., Lothstein, L., Wei, L. and Pfeffer, L.M. (2009) Interferon-Resistant Daudi Cell Line with a Stat2 Defect Is Resistant to Apoptosis Induced by Chemotherapeutic Agents. The Journal of Biological Chemistry, 284, 27808-27815.
https://doi.org/10.1074/jbc.M109.028324
[42]  Paladugu, B., Kumar, A., Parrillo, J.E., Der, S., Osman, J., Mensing, J., Falvo, L., Xu, X. and Kumar, A. (2004) Bacterial DNA and RNA Induce Rat Cardiac Myocyte Contraction Depression in Vitro. Shock, 21, 364-369.
https://doi.org/10.1097/00024382-200404000-00012
[43]  Brabant, D., Michael, P., Bleiblo, F., Saleh, M., Narain, R., Tai, T.C., Ramana, C.V., Parrillo, J.E., Kumar, A. and Kumar, A. (2011) Septic Sera Induces Apoptosis and DNA Fragmentation Factor 40 Activation in Fibroblasts. Biochemical and Biophysical Research Communications, 412, 260-265.
https://doi.org/10.1016/j.bbrc.2011.07.080
[44]  Hussein, S., Michael, P., Brabant, D., Omri, A., Narain, R., Passi, K., Ramana, C.V., Parrillo, J.E., Kumar, A., Parissenti, A. and Kumar, A. (2009) Characterization of Human Septic Sera Induced Gene Expression Modulation in Human Myocytes. International Journal of Clinical and Experimental Medicine, 2, 131-148.
[45]  Stacey, K.J., Sweet, M.J. and Hume, D.A. (1996) Macrophages Ingest and Are Activated by Bacterial DNA. The Journal of Immunology, 157, 2116-2122.
[46]  Sparwasser, T., Miethke, T., Lipford, G., Borschert, K., Hacker, H., Heeg, K. and Wagner, H. (1997) Bacterial DNA Causes Septic Shock. Nature, 386, 336-337.
https://doi.org/10.1038/386336a0
[47]  Chiu, Y.H., Macmillan, J.B. and Chen, Z.J. (2009) RNA Polymerase III Detects Cytosolic DNA and Induces Type I Interferons through the RIG-I Pathway. Cell, 138, 576-591.
https://doi.org/10.1016/j.cell.2009.06.015
[48]  Eberle, F., Sirin, M., Binder, M. and Dalpke, A.H. (2009) Bacterial RNA Is Recognized by Different Sets of Immunoreceptors. European Journal of Immunology, 39, 2537-2547.
https://doi.org/10.1002/eji.200838978
[49]  Zakharova, N., Lymar, E.S., Yang, E., Malik, S., Zhang, J.J., Roeder, R.G. and Darnell, J.E. (2003) Distinct Transcriptional Activation Functions of STAT1α and STAT1β on DNA and Chromatin Templates. The Journal of Biological Chemistry, 278, 43067-43073.
https://doi.org/10.1074/jbc.M308166200
[50]  Meyer, T., Begitt, A., Lodige, I., van Rossum, M. and Vinkemeier, U. (2002) Constitutive and IFN-gamma-Induced Nuclear Import of STAT1 Proceed through Independent Pathways. EMBOJ, 21, 344-354.
https://doi.org/10.1093/emboj/21.3.344
[51]  Braunstein, J., Brutsaert, S., Olson, R. and Schindler, C. (2003) STATs Dimerize in the Absence of Phosphorylation. The Journal of Biological Chemistry, 278, 34133-34140.
https://doi.org/10.1074/jbc.M304531200
[52]  Yang, J. and Stark, G.R. (2008) Roles of Unphosphorylated STATs in Signaling. Cell Research, 18, 443-451.
https://doi.org/10.1038/cr.2008.41
[53]  Banninger, G. and Reich, N.C. (2004) STAT2 Nuclear Trafficking. The Journal of Biological Chemistry, 279, 39199-39206.
https://doi.org/10.1074/jbc.M400815200
[54]  Mao, X., Ren, Z., Parker, G.N., Sondermann, H., Pastorello, M.A., Wang, W., McMurray, J.S., Demeler, B., Darnell, J.E. and Chen, X. (2005) Structural Bases of Unphosphorylated STAT1 Association and Receptor Binding. Molecular Cell, 17, 761-771.
https://doi.org/10.1016/j.molcel.2005.02.021
[55]  Kovarik, P., Stoiber, D., Eyers, P.A., Menghini, R., Neininger, A., Gaestel, M., Cohen, P. and Decker, T. (1999) Stress-Induced Phosphorylation of STAT1 at Ser727 Requires p38 Mitogen-Activated Protein Kinase Whereas IFN-γ Uses a Different Signaling Pathway. Proceedings of the National Academy of Sciences of the United States of America, 96, 13956-13961.
https://doi.org/10.1073/pnas.96.24.13956
[56]  Sadzak, I., Schiff, M., Gattermeier, I., Glinitzer, R., Sauer, I., Saalmuller, A., Yang, E., Schaljo, B. and Kovarik, P. (2008) Recruitment of Stat1 to Chromatin Is Required for Interferon-Induced Serine Phosphorylation of Stat1 Transactivation Domain. Proceedings of the National Academy of Sciences of the United States of America, 105, 8944-8949.
https://doi.org/10.1073/pnas.0801794105
[57]  Kovarik, P., Mangold, M., Ramsauer, K., Heidari, H., Steinborn, R., Zotter, A., Levy, D.E., Muller, M. and Decker, T. (2001) Specificity of Signaling by STAT1 Depends on SH2 and C-Terminal Domains That Regulate Ser727 Phosphorylation, Differentially Affecting Specific Target Gene Expression. EMBOJ, 20, 91-100.
https://doi.org/10.1093/emboj/20.1.91
[58]  Stephanou, A., Scarabelli, T.M., Brar, B.K., Nakanishi, Y., Matsumura, M., Knight, R.A. and Latchman, D.S. (2001) Induction of Apoptosis and Fas Receptor/Fas Ligand Expression by Ischemia/Reperfusion in Cardiac Myocytes Requires Serine 727 of the STAT-1 Transcription Factor but Not Tyrosine 701. The Journal of Biological Chemistry, 276, 28340-28347.
https://doi.org/10.1074/jbc.M101177200
[59]  Varinou, L., Ramsauer, K., Karaghiosoff, M., Kolbe, T., Pfeffer, K., Muller, M. and Decker, T. (2003) Phosphorylation of the Stat1 Transactivation Domain Is Required for Full-Fledged IFN-gamma-Dependent Innate Immunity. Immunity, 19, 793-802.
https://doi.org/10.1016/S1074-7613(03)00322-4
[60]  Casciano, I., De Ambrosis, A., Croce, M., Pagnan, G., Di Vinci, A., Allemanni, G., Banelli, B., Ponzoni, M., Romani, M. and Ferrini, S. (2004) Expression of the Caspase-8 Gene in Neuroblastoma Cells Is Regulated through an Essential Interferon-Sensitive Response Element (ISRE). Cell Death and Differentiation, 11, 131-134.
https://doi.org/10.1038/sj.cdd.4401327
[61]  De Ambrosis, A., Casciano, I., Croce, M., Pagnan, G., Radic, L., Banelli, B., Di Vinci, A., Allemanni, G., Tonini, G.P., Ponzoni, M., Romani, M. and Ferrini, S. (2007) An Interferon-Sensitive Response Element Is Involved in Constitutive caspase-8 Gene Expression in Neuroblastoma Cells. International Journal of Cancer, 120, 39-47.
https://doi.org/10.1002/ijc.22173
[62]  Ruiz-Ruiz, C., Ruiz de Almodovar, C., Rodriguez, A., Ortiz-Ferron, G., Redondo, J.M. and Lopez-Rivas, A. (2004) The Up-Regulation of Human Caspase-8 by Interferon-γ in Breast Tumor Cells Requires the Induction and Action of the Transcription Factor Interferon Regulatory Factor-1. The Journal of Biological Chemistry, 279, 19712-19720.
https://doi.org/10.1074/jbc.M313023200
[63]  Townsend, P.A., Scarabelli, T.M., Davidson, S.M., Knight, R.A., Latchman, D.S. and Stephanou, A. (2004) STAT-1 Interacts with p53 to Enhance DNA Damage-Induced Apoptosis. The Journal of Biological Chemistry, 279, 5811-5820.
https://doi.org/10.1074/jbc.M302637200
[64]  Youlyouz-Marfak, I., Gachard, N., Le Clorennec, C., Najjar, I., Baran-Marszak, F., Reminieras, L., May, E., Bornkamm, G.W., Fagard, R. and Feuillard, J. (2008) Identification of a Novel p53-Dependent Activation Pathway of STAT1 by Antitumourgenotoxic Agents. Cell Death and Differentiation, 15, 376-385.
https://doi.org/10.1038/sj.cdd.4402270
[65]  Qureshi, S.A., Leung, S., Kerr, I.M., Stark, G.R. and Darnell, J.E. (1996) Function of Stat2 Protein in Transcriptional Activation by Alpha Interferon. Molecular and Cellular Biology, 16, 288-293.
https://doi.org/10.1128/MCB.16.1.288
[66]  Bluyssen, H.A. and Levy, D.E. (1997) Stat2 Is a Transcriptional Activator That Requires Sequence-Specific Contacts Provided by Stat1 and p48 for Stable Interaction with DNA. The Journal of Biological Chemistry, 272, 4600-4605.
https://doi.org/10.1074/jbc.272.7.4600
[67]  Kraus, T.A., Lau, J.F., Parisien, J.P. and Horvath, C.M. (2003) A Hybrid IRF9-STAT2 Protein Recapitulates Interferon-Stimulated Gene Expression and Antiviral Response. The Journal of Biological Chemistry, 278, 13033-13038.
https://doi.org/10.1074/jbc.M212972200
[68]  Romero-Weaver, A.L., Wang, H.W., Steen, H.C., Scarzello, A.J., Hall, V.L., Sheikh, F., Donnelly, R.P. and Gamero, A.M. (2010) Resistance to IFN-alpha-Induced Apoptosis Is Linked to a Loss of STAT2. Molecular Cancer Research, 8, 80-92.
https://doi.org/10.1158/1541-7786.MCR-08-0344
[69]  Decker, T. and Kovarik, P. (2000) Serine Phosphorylation of STATs. Oncogene, 19, 2628-2637.
https://doi.org/10.1038/sj.onc.1203481
[70]  Nguyen, H., Ramana, C.V., Bayes, J. and Stark, G.R. (2001) Phosphatidylinositol 3-Kinase in Interferon-γ-Dependent Phosphorylation of STAT1 on Serine 727 and Activation of Gene Expression. The Journal of Biological Chemistry, 276, 33361-33368.
https://doi.org/10.1074/jbc.M105070200

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133