全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Automated Burned Scar Mapping Using Sentinel-2 Imagery

DOI: 10.4236/jgis.2020.123014, PP. 221-240

Keywords: Operational Burned Area Mapping, Multiple Spectral-Spatial Classification (MSSC), Sentinel-2, Automatic Training Patterns Classification, Machine Learning

Full-Text   Cite this paper   Add to My Lib

Abstract:

The Sentinel-2 satellites are providing an unparalleled wealth of high-resolution remotely sensed information with a short revisit cycle, which is ideal for mapping burned areas both accurately and timely. However, the high detail and volume of information provided actually encumbers the automation of the mapping process, at least for the level of automation required to map systematically wildfires on a national level. This paper proposes a fully automated methodology for mapping burn scars using Sentinel-2 data. Information extracted from a pair of Sentinel-2 images, one pre-fire and one post-fire, is jointly used to automatically label a set of training patterns via two empirical rules. An initial pixel-based classification is derived using this training set by means of a Support Vector Machine (SVM) classifier. The latter is subsequently smoothed following a multiple spectral-spatial classification (MSSC) approach, which increases the mapping accuracy and thematic consistency of the final burned area delineation. The proposed methodology was tested on six recent wildfire events in Greece, selected to cover representative cases of the Greek ecosystems and to present challenges in burned area mapping. The lowest classification accuracy achieved was 92%, whereas Matthews correlation coefficient (MCC) was greater or equal to 0.85.

References

[1]  Pausas, J.G., Llovet, J., Rodrigo, A. and Vallejo, R. (2009) Are Wildfires a Disaster in the Mediterranean Basin? A Review. International Journal of Wildland Fire, 17, 713-723.
https://doi.org/10.1071/WF07151
[2]  San-Miguel-Ayanz, J., Moreno, J.M. and Camia, A. (2013) Analysis of Large Fires in European Mediterranean Landscapes: Lessons Learned and Perspectives. Forest Ecology and Management, 294, 11-22.
https://doi.org/10.1016/j.foreco.2012.10.050
[3]  San-Miguel-Ayanz, J., Durrant, T., Boca, R., Libertà, G., Branco, A., de Rigo, D., et al. (2018) Forest Fires in Europe, Middle East and North Africa 2017. Publications Office of the European Union, Luxembourg.
[4]  Chuvieco, E., Mouillot, F., van der Werf, G.R., San Miguel, J., Tanase, M., Koutsias, N., et al. (2019) Historical Background and Current Developments for Mapping Burned Area from Satellite Earth Observation. Remote Sensing of Environment, 225, 45-64.
https://doi.org/10.1016/j.rse.2019.02.013
[5]  Giglio, L., Boschetti, L., Roy, D.P., Humber, M.L. and Justice, C.O. (2018) The Collection 6 MODIS Burned Area Mapping Algorithm and Product. Remote Sensing of Environment, 217, 72-85.
https://doi.org/10.1016/j.rse.2018.08.005
[6]  Chuvieco, E., Yue, C., Heil, A., Mouillot, F., Alonso-Canas, I., Padilla, M., et al. (2016) A New Global Burned Area Product for Climate Assessment of Fire Impacts. Global Ecology and Biogeography, 25, 619-629.
https://doi.org/10.1111/geb.12440
[7]  Goodwin, N.R. and Collett, L.J. (2014) Development of an Automated Method for Mapping Fire History Captured in Landsat TM and ETM + Time Series across Queensland, Australia. Remote Sensing of Environment, 148, 206-221.
https://doi.org/10.1016/j.rse.2014.03.021
[8]  Bastarrika, A., Alvarado, M., Artano, K., Martinez, M.P., Mesanza, A., Torre, L., et al. (2014) BAMS: A Tool for Supervised Burned Area Mapping Using Landsat Data. Remote Sensing, 6, 12360-12380.
https://doi.org/10.3390/rs61212360
[9]  Hawbaker, T.J., Vanderhoof, M.K., Beal, Y.-J., Takacs, J.D., Schmidt, G.L., Falgout, J.T., et al. (2017) Mapping Burned Areas Using Dense Time-Series of Landsat Data. Remote Sensing of Environment, 198, 504-522.
https://doi.org/10.1016/j.rse.2017.06.027
[10]  Woodcock, C.E., Allen, R., Anderson, M., Belward, A., Bindschadler, R., Cohen, W., et al. (2008) Free Access to Landsat Imagery. Science, 320, 1011.
https://doi.org/10.1126/science.320.5879.1011a
[11]  Sertel, E. and Alganci, U. (2016) Comparison of Pixel and Object-Based Classification for Burned Area Mapping Using SPOT-6 Images. Geomatics, Natural Hazards and Risk, 7, 1198-1206.
https://doi.org/10.1080/19475705.2015.1050608
[12]  Huang, H., Roy, D.P., Boschetti, L., Zhang, H.K., Yan, L., Kumar, S.S., et al. (2016) Separability Analysis of Sentinel-2A Multi-Spectral Instrument (MSI) Data for Burned Area Discrimination. Remote Sensing, 8, 873.
https://doi.org/10.3390/rs8100873
[13]  Fernández-Manso, A., Fernán-dez-Manso, O. and Quintano, C. (2016) SENTINEL-2A Red-Edge Spectral Indices Suitability for Discriminating Burn Severity. International Journal of Applied Earth Observation and Geoinformation, 50, 170-175.
https://doi.org/10.1016/j.jag.2016.03.005
[14]  Amos, C., Petropoulos, G.P. and Ferentinos, K.P. (2019) Determining the Use of Sentinel-2A MSI for Wildfire Burning & Severity Detection. International Journal of Remote Sensing, 40, 905-930.
https://doi.org/10.1080/01431161.2018.1519284
[15]  Roteta, E., Bastarrika, A., Padilla, M., Storm, T. and Chuvieco, E. (2019) Development of a Sentinel-2 Burned Area Algorithm: Generation of a Small Fire Database for Sub-Saharan Africa. Remote Sensing of Environment, 222, 1-17.
https://doi.org/10.1016/j.rse.2018.12.011
[16]  Roy, D.P., Huang, H., Boschetti, L., Giglio, L., Yan, L., Zhang, H.H., et al. (2019) Landsat-8 and Sentinel-2 Burned Area Mapping: A Combined Sensor Multi-Temporal Change Detection Approach. Remote Sensing of Environment, 231, 111254.
https://doi.org/10.1016/j.rse.2019.111254
[17]  Vapnik, V.N. (1998) Statistical Learning Theory. Wiley, New York.
[18]  Tarabalka, Y., Benediktsson, J.A., Chanussot, J. and Tilton, J.C. (2010) Multiple Spectral-Spatial Classification Approach for Hyperspectral Data. IEEE Transactions on Geoscience and Remote Sensing, 48, 4122-4132.
https://doi.org/10.1109/TGRS.2010.2062526
[19]  Drusch, M., Del Bello, U., Carlier, S., Colin, O., Fernandez, V., Gascon, F., et al. (2012) Sentinel-2: ESA’s Optical High-Resolution Mission for GMES Operational Services. Remote Sensing of Environment, 120, 25-36.
https://doi.org/10.1016/j.rse.2011.11.026
[20]  Gascon, F., Bouzinac, C., Thépaut, O., Jung, M., Francesconi, B., Louis, J., et al. (2017) Copernicus Sentinel-2A Calibration and Products Validation Status. Remote Sensing, 9, 584.
https://doi.org/10.3390/rs9060584
[21]  Tompoulidou, M., Stefanidou, A., Grigoriadis, D., Dragozi, E., Stavrakoudis, D. and Gitas, I.Z. (2016) The Greek National Observatory of Forest Fires (NOFFi). Proceedings of SPIE, Vol. 9688, 96880N-96880N-9.
https://doi.org/10.1117/12.2240560
[22]  Rouse, J.W., Haas, R.H., Schell, J.A. and Deering, D.W. (1974) Monitoring Vegetation Systems in the Great Plains with ERTS. In: Freden, S.C., Mercanti, E.P. and Becker, M.A., Eds., Third Earth Resources Technology Satellite-1 Symposium, NASA Special Publication, Washington DC, 309-313.
[23]  Qi, J., Chehbouni, A., Huete, A.R., Kerr, Y.H. and Sorooshian, S. (1994) A Modified Soil Adjusted Vegetation Index. Remote Sensing of Environment, 48, 119-126.
https://doi.org/10.1016/0034-4257(94)90134-1
[24]  Smith, A.M.S., Wooster, M.J., Drake, N.A., Dipotso, F.M., Falkowski, M.J. and Hudak, A.T. (2005) Testing the Potential of Multi-Spectral Remote Sensing for Retrospectively Estimating Fire Severity in African Savannahs. Remote Sensing of Environment, 97, 92-115.
https://doi.org/10.1016/j.rse.2005.04.014
[25]  Trigg, S. and Flasse, S. (2001) An Evaluation of Different Bi-Spectral Spaces for Discriminating Burned Shrub-Savannah. International Journal of Remote Sensing, 22, 2641-2647.
https://doi.org/10.1080/01431160110053185
[26]  Key, C.H. and Benson, N.C. (2006) Landscape Assessment: Ground Measure of Severity, the Composite Burn In-dex; and Remote Sensing of Severity, the Normalized Burn Ratio. USDA Forest Service, Rocky Mountain Research Station, Ogden.
[27]  USGS (2017) Landsat Surface Reflectance-Derived Spectral Indices. Department of the Interior, U.S. Geological Survey.
[28]  Hardisky, M.A., Klemas, V. and Smart, R.M. (1983) The Influence of Soil Salinity Growth Form and Leaf Moisture on the Spectral Radiance of Spartina alterniflora Canopies. Photogrammetric Engineering & Remote Sensing, 49, 77-83.
[29]  Xu, H. (2006) Modification of Normalised Difference Water Index (NDWI) to Enhance Open Water Features in Remotely Sensed Imagery. International Journal of Remote Sensing, 27, 3025-3033.
https://doi.org/10.1080/01431160600589179
[30]  Gonzalez, R.C. and Woods, R.E. (2007) Digital Image Processing. 3rd Edition, Prentice Hall, Upper Saddle River.
[31]  Vincent, L. and Soille, P. (1991) Watersheds in Digital Spaces: An Efficient Algorithm Based on Immersion Simulations. IEEE Transactions on Pattern Analysis and Machine Intelligence, 13, 583-598.
https://doi.org/10.1109/34.87344
[32]  Bezdek, J.C., Ehrlich, R. and Full, W. (1984) FCM: The Fuzzy C-Means Clustering Algorithm. Computers & Geosciences, 10, 191-203.
https://doi.org/10.1016/0098-3004(84)90020-7
[33]  Cheng, Y. (1995) Mean Shift, Mode Seeking, and Clustering. IEEE Transactions on Pattern Analysis and Machine Intelligence, 17, 790-799.
https://doi.org/10.1109/34.400568
[34]  Evans, A.N. and Liu, X.U. (2006) A Morphological Gradient Approach to Color Edge Detection. IEEE Transactions on Image Processing, 15, 1454-1463.
https://doi.org/10.1109/TIP.2005.864164
[35]  Huang, X. and Zhang, L. (2008) An Adaptive Mean-Shift Analysis Approach for Object Extraction and Classification From Urban Hyperspectral Imagery. IEEE Transactions on Geoscience and Remote Sensing, 46, 4173-4185.
https://doi.org/10.1109/TGRS.2008.2002577
[36]  Huang, X. and Zhang, L. (2010) Comparison of Vector Stacking, Multi-SVMs Fuzzy Output, and Multi-SVMs Voting Methods for Multiscale VHR Urban Mapping. IEEE Geoscience and Remote Sensing Letters, 7, 261-265.
https://doi.org/10.1109/LGRS.2009.2032563
[37]  Cormen, T.H., Leiserson, C.E., Rivest, R.L. and Stein, C. (2009) Introduction to Algorithms. 3rd Edition, The MIT Press, Cambridge.
[38]  Tarabalka, Y., Chanussot, J. and Benediktsson, J.A. (2010) Segmentation and Classification of Hyperspectral Images Using Minimum Spanning Forest Grown from Automatically Selected Markers. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 40, 1267-1279.
https://doi.org/10.1109/TSMCB.2009.2037132
[39]  Tharwat, A. (2018) Classification Assessment Methods. Applied Computing and Informatics. (In Press)
https://doi.org/10.1016/j.aci.2018.08.003
[40]  Boughorbel, S., Jarray, F. and El-Anbari, M. (2017) Optimal Classifier for Imbalanced Data Using Matthews Correlation Coefficient Metric. PLoS ONE, 12, e0177678.
https://doi.org/10.1371/journal.pone.0177678

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133