全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Positioning  2020 

Ripple Tectonics—When Subduction Is Interrupted

DOI: 10.4236/pos.2020.113003, PP. 33-44

Keywords: Plate Tectonics, Subduction-Collision Transition, Miocene-Pliocene Transition

Full-Text   Cite this paper   Add to My Lib

Abstract:

Subduction plays a fundamental role in plate tectonics and is a significant factor in modifying the structure and topography of the Earth. It is driven by convection forces that change over a >100 Myr time scale. However, when an oceanic plateau approaches, it plugs the subduction, and causes slab necking and tearing. This abrupt change may trigger a series of geodynamic (tectonic, volcanic) and sedimentary responses recorded across the convergence boundary and its surrounding regions by synchronous structural modifications. We suggest that a large enough triggering event may lead to a ripple tectonic effect that propagates outwards while speeding up the yielding of localized stress states that otherwise would not reach their threshold. The ripple effect facilitates tectonic, volcanic, and structural events worldwide that are seemingly unrelated. When the world’s largest oceanic plateau, Ontong Java Plateau (OJP), choked the Pacific-Australian convergence zone at ~6 Myr ago, it induced kinematic modifications throughout the Pacific region and along its plate margins. Other, seemingly unrelated, short-lived modifications were recorded worldwide during that time window. These modifications changed the rotation of the entire Pacific plate, which occupies ~20% of the Earth’s surface. In addition, the Scotia Sea spreading stopped, global volcanism increased, the Strait of Gibraltar closed, and the Mediterranean Sea dried up and induced the Messinian salinity crisis. In this paper, we attribute these and many other synchronous events to a new “ripple tectonics” mechanism. We suggest that the OJPincipient collision triggered the Miocene-Pliocene transition. Similarly, we suggest that innovative GPS-based studies conducted today may seek the connectivity between tectonic, seismic, and volcanic events worldwide.

References

[1]  Forsyth, D. and Uyeda, S. (1975) On the Relative Importance of the Driving Forces of Plate Motion. Geophysical Journal International, 43, 163-200.
https://doi.org/10.1111/j.1365-246X.1975.tb00631.x
[2]  Bunge, H.-P., Richards, M.A., Lithgow-Bertelloni, C., Baumgardner, J.R., Grand, S.P. and Romanowicz, B.A. (1998) Time Scales and Heterogeneous Structure in Geodynamic Earth Models. Science, 280, 91-95.
https://doi.org/10.1126/science.280.5360.91
[3]  Bercovici, D., Schubert, G. and Ricard, Y. (2015) Abrupt Tectonics and Rapid Slab Detachment with Grain Damage. Proceedings of the National Academy of Sciences of the United States of America, 112, 1287-1291.
https://doi.org/10.1073/pnas.1415473112
[4]  Neal, C.R., Mahoney, J.J., Kroenke, L.W., Duncan, R.A. and Petterson, M.G. (1997) The Ontong Java Plateau. Geophysical Monograph-American Geophysical Union, 100, 183-216.
https://doi.org/10.1029/GM100p0183
[5]  Mahoney, J.J. and Coffin, M.F. (1997) Large Igneous Provinces: Continental, Oceanic, and Planetary Flood Volcanism, Volume 100. American Geophysical Union, Washington DC.
https://doi.org/10.1029/GM100
[6]  Fitton, J.G., Mahoney, J.J., Wallace, P.J. and Saunders, A.D. (2004) Origin and Evolution of the Ontong Java Plateau: Introduction. Geological Society, London, Special Publications, 229, 1-8.
https://doi.org/10.1144/GSL.SP.2004.229.01.01
[7]  Ingle, S. and Coffin, M.F. (2004) Impact Origin for the Greater Ontong Java Plateau? Earth and Planetary Science Letters, 218, 123-134.
https://doi.org/10.1016/S0012-821X(03)00629-0
[8]  Ben-Avraham, Z., Nur, A., Jones, D. and Cox, A. (1981) Continental Accretion: From Oceanic Plateaus to Allochthonous Terranes. Science, 213, 47-54.
https://doi.org/10.1126/science.213.4503.47
[9]  Mann, P. and Taira, A. (2004) Global Tectonic Significance of the Solomon Islands and Ontong Java Plateau Convergent Zone. Tectonophysics, 389, 137-190.
https://doi.org/10.1016/j.tecto.2003.10.024
[10]  Austermann, J., Ben-Avraham, Z., Bird, P., Heidbach, O., Schubert, G. and Stock, J.M. (2011) Quantifying the Forces Needed for the Rapid Change of Pacific Plate Motion at 6 Ma. Earth and Planetary Science Letters, 307, 289-297.
https://doi.org/10.1016/j.epsl.2011.04.043
[11]  Cox, A. and Engebretson, D. (1985) Erratum: Change in Motion of Pacific Plate at 5 Myr BP. Nature, 314, 561-561.
https://doi.org/10.1038/314561a0
[12]  Wessel, P. and Kroenke, L.W. (2000) Ontong Java Plateau and Late Neogene Changes in Pacific Plate Motion. Journal of Geophysical Research: Solid Earth, 105, 28255-28277.
https://doi.org/10.1029/2000JB900290
[13]  Leroux, E., Aslanian, D., Rabineau, M., Pellen, R. and Moulin, M. (2018) The Late Messinian Event: A Worldwide Tectonic Revolution. Terra Nova, 30, 207-214.
https://doi.org/10.1111/ter.12327
[14]  Briais, A., Aslanian, D., Géli, L. and Ondréas, H. (2002) Analysis of Propagators along the Pacific-Antarctic Ridge: Evidence for Triggering by Kinematic Changes. Earth and Planetary Science Letters, 199, 415-428.
https://doi.org/10.1016/S0012-821X(02)00567-8
[15]  Cande, S.C., Raymond, C.A., Stock, J. and Haxby, W.F. (1995) Geophysics of the Pitman Fracture Zone and Pacific-Antarctic Plate Motions during the Cenozoic. Science, 270, 947-953.
https://doi.org/10.1126/science.270.5238.947
[16]  Hilgen, F.J., Lourens, L.J., Van Dam, J.A., Beu, A.G., Boyes, A.F., Cooper, R.A., Krijgsman, W., Ogg, J.G., Piller, W.E. and Wilson, D.S. (2012) The Neogene Period. In: Gradstein, F.M., Ogg, J.G., Schmitz, M.D. and Ogg, G.M., Eds., The Geologic Time Scale, Elsevier, Boston, Chap. 29, 923-978.
https://doi.org/10.1016/B978-0-444-59425-9.00029-9
[17]  Rusby, R.I. and Searle, R.C. (1995) A History of the Easter Microplate, 5.25 Ma to Present. Journal of Geophysical Research: Solid Earth, 100, 12617-12640.
https://doi.org/10.1029/94JB02779
[18]  Tebbens, S. and Cande, S. (1997) Southeast Pacific Tectonic Evolution from Early Oligocene to Present. Journal of Geophysical Research: Solid Earth, 102, 12061-12084.
https://doi.org/10.1029/96JB02582
[19]  Croon, M.B., Cande, S.C. and Stock, J.M. (2008) Revised Pacific-Antarctic Plate Motions and Geophysics of the Menard Fracture Zone. Geochemistry, Geophysics, Geosystems, 9, Q07001.
https://doi.org/10.1029/2008GC002019
[20]  Lodolo, E., Coren, F. and Ben-Avraham, Z. (2013) How Do Long-Offset Oceanic Transforms Adapt to Plate Motion Changes? The Example of the Western Pacific-Antarctic Plate Boundary. Journal of Geophysical Research: Solid Earth, 118, 1195-1202.
https://doi.org/10.1002/jgrb.50109
[21]  Lu, H., Fulthorpe, C.S., Mann, P. and Kominz, M.A. (2005) Miocene-Recent Tectonic and Climatic Controls on Sediment Supply and Sequence Stratigraphy: Canterbury Basin, New Zealand. Basin Research, 17, 311-328.
https://doi.org/10.1111/j.1365-2117.2005.00266.x
[22]  Cande, S.C. and Stock, J.M. (2004) Pacific-Antarctic-Australia Motion and the Formation of the Macquarie Plate. Geophysical Journal International, 157, 399-414.
https://doi.org/10.1111/j.1365-246X.2004.02224.x
[23]  Matsubara, Y. and Seno, T. (1980) Paleogeographic Reconstruction of the Philippine Sea at 5 my BP. Earth and Planetary Science Letters, 51, 406-414.
https://doi.org/10.1016/0012-821X(80)90220-4
[24]  Sarewitz, D.R. and Karig, D.E. (1986) Geologic Evolution of Western Mindoro Island and the Mindoro Suture Zone, Philippines. Journal of Southeast Asian Earth Sciences, 1, 117-144.
https://doi.org/10.1016/0743-9547(86)90026-7
[25]  Eagles, G., Livermore, R.A., Fairhead, J.D. and Morris, P. (2005) Tectonic Evolution of the West Scotia Sea. Journal of Geophysical Research: Solid Earth, 110, B02401.
https://doi.org/10.1029/2004JB003154
[26]  Lodolo, E., Menichetti, M., Bartole, R., Ben-Avraham, Z., Tassone, A. and Lippai, H. (2003) Magallanes-Fagnano Continental Transform Fault (Tierra del Fuego, Southernmost South America). Tectonics, 22, 1076-1103.
https://doi.org/10.1029/2003TC001500
[27]  Tassone, A., Yagupsky, D., Lodolo, E., Menichetti, M. and Lippai, H. (2005) Seismic Study of the Southernmost Andes in the SW Atlantic Ocean: Main Wrench Faults and Associated Basin. 6th International Symposium on Andean Geodynamics, Barcelona, 722-725.
[28]  Ghiglione, M.C., Sue, C., Ramos, M.E., Tobal, J.E. and Gallardo, R.E. (2016) The Relation between Neogene Denudation of the Southernmost Andes and Sedimentation in the Offshore Argentine and Malvinas Basins During the Opening of the Drake Passage. In: Ghiglione, C., Ed., Geodynamic Evolution of the Southernmost Andes, Springer, Berlin, 109-135.
https://doi.org/10.1007/978-3-319-39727-6
[29]  Baristeas, N., Anka, Z., di Primio, R., Rodriguez, J., Marchal, D. and Dominguez, F. (2013) New Insights into the Tectono-Stratigraphic Evolution of the Malvinas Basin, Offshore of the Southernmost Argentinean Continental Margin. Tectonophysics, 604, 280-295.
https://doi.org/10.1016/j.tecto.2013.06.009
[30]  Ghiglione, M.C., Likerman, J., Giambiagi, L.B., Aguirre-Urreta, B. and Suarez, F. (2014) Geodynamic Context for the Deposition of Coarse-Grained Deep-Water Axial Channel Systems in the Patagonian Andes. Basin Research, 26, 726-745.
https://doi.org/10.1111/bre.12061
[31]  Colli, L., Stotz, I., Bunge, H.P., Smethurst, M., Clark, S., Iaffaldano, G., Tassara, A., Guillocheau, F. and Bianchi, M.C. (2014) Rapid South Atlantic Spreading Changes and Coeval Vertical Motion in Surrounding Continents: Evidence for Temporal Changes of Pressure-Driven Upper Mantle Flow. Tectonics, 33, 1304-1321.
https://doi.org/10.1002/2014TC003612
[32]  Bruguier, N., Minshull, T. and Brozena, J. (2003) Morphology and Tectonics of the Mid-Atlantic Ridge, 7° - 12°S. Journal of Geophysical Research: Solid Earth, 108, 2093.
https://doi.org/10.1029/2001JB001172
[33]  Cande, S.C. and Stegman, D.R. (2011) Indian and African Plate Motions Driven by the Push Force of the Reunion Plume Head. Nature, 475, 47.
https://doi.org/10.1038/nature10174
[34]  Macchiavelli, C., Vergés, J., Schettino, A., Fernàndez, M., Turco, E., Casciello, E., Torne, M., Pierantoni, P.P. and Tunini, L. (2017) A New Southern North Atlantic Isochron Map: Insights into the Drift of the Iberian Plate Since the Late Cretaceous. Journal of Geophysical Research: Solid Earth, 122, 9603-9626.
https://doi.org/10.1002/2017JB014769
[35]  Iaffaldano, G., Bodin, T. and Sambridge, M. (2012) Reconstructing Plate-Motion Changes in the Presence of Finite-Rotations Noise. Nature Communications, 3, 1048.
https://doi.org/10.1038/ncomms2051
[36]  Vibe, Y., Friedrich, A.M., Bunge, H.-P. and Clark, S.R. (2018) Correlations of Oceanic Spreading Rates and Hiatus Surface Area in the North Atlantic Realm. Lithosphere, 10, 677-684.
https://doi.org/10.1130/L736.1
[37]  Cloetingh, S., Gradstein, F., Kooi, H., Grant, A. and Kaminski, M. (1990) Plate Reorganization: A Cause of Rapid Late Neogene Subsidence and Sedimentation around the North Atlantic? Journal of the Geological Society, 147, 495-506.
https://doi.org/10.1144/gsjgs.147.3.0495
[38]  Bergerat, F. (1987) Paleo-champs de contrainte tertiaires dans la plate-forme europeenne au front de l’orogene alpin. Bulletin de la Société Géologique de France, 3, 611-620.
https://doi.org/10.2113/gssgfbull.III.3.611
[39]  Balázs, A., Matenco, L., Magyar, I., Horváth, F. and Cloetingh, S. (2016) The Link between Tectonics and Sedimentation in Back-Arc Basins: New Genetic Constraints from the Analysis of the Pannonian Basin. Tectonics, 35, 1526-1559.
https://doi.org/10.1002/2015TC004109
[40]  Csontos, L. and Nagymarosy, A. (1998) The Mid-Hungarian Line: A Zone of Repeated Tectonic Inversions. Tectonophysics, 297, 51-71.
https://doi.org/10.1016/S0040-1951(98)00163-2
[41]  Allen, M.B., Jones, S., Ismail-Zadeh, A., Simmons, M. and Anderson, L. (2002) Onset of Subduction as the Cause of Rapid Pliocene-Quaternary Subsidence in the South Caspian Basin. Geology, 30, 775-778.
https://doi.org/10.1130/0091-7613(2002)030<0775:OOSATC>2.0.CO;2
[42]  Harrison, R.W., Newell, W.L., Batihanli, H., Panayides, I., McGeehin, J.P., Mahan, S.A., Ozhur, A., Tsiolakis, E. and Necdet, M. (2004) Tectonic Framework and Late Cenozoic Tectonic History of the Northern Part of Cyprus: Implications for Earthquake Hazards and Regional Tectonics. Journal of Asian Earth Sciences, 23, 191-210.
https://doi.org/10.1016/S1367-9120(03)00095-6
[43]  Kempler, D. (1998) Eratosthenes Seamount: The Possible Spearhead of Incipient Continental Collision in the Eastern Mediterranean. Proceedings of the Ocean Drilling Program, Scientific Results, Vol. 160, 709-721.
https://doi.org/10.2973/odp.proc.sr.160.031.1998
[44]  Joffe, S. and Garfunkel, Z. (1987) Plate Kinematics of the Circum Red Sea—A Re-Evaluation. Tectonophysics, 141, 5-22.
https://doi.org/10.1016/0040-1951(87)90171-5
[45]  Pollitz, F.F. (1991) Two-Stage Model of African Absolute Motion during the Last 30 Million Years. Tectonophysics, 194, 91-106.
https://doi.org/10.1016/0040-1951(91)90274-V
[46]  Wang, Y., Zhang, X., Jiang, C., Wei, H. and Wan, J. (2007) Tectonic Controls on the Late Miocene-Holocene Volcanic Eruptions of the Tengchong Volcanic Field along the Southeastern Margin of the Tibetan Plateau. Journal of Asian Earth Sciences, 30, 375-389.
https://doi.org/10.1016/j.jseaes.2006.11.005
[47]  Harrison, T.M., Ryerson, F., Le Fort, P., Yin, A., Lovera, O.M. and Catlos, E. (1997) A Late Miocene-Pliocene Origin for the Central Himalayan Inverted Metamorphism. Earth and Planetary Science Letters, 146, E1-E7.
https://doi.org/10.1016/S0012-821X(96)00215-4
[48]  De Ribet, B. and Patriat, P. (1988) La région axiale de la dorsale sud-ouest indienne entre 53° est et 59° est: Son evolution depuis 10 Ma. Marine Geophysical Researches, 10, 139-156.
https://doi.org/10.1007/BF00310061
[49]  Patriat, P. and Parson, L. (1989) A Survey of the Indian Ocean Triple Junction Trace within the Antarctic Plate. Implications for the Junction Evolution Since 15 Ma. Marine Geophysical Researches, 11, 89-100.
https://doi.org/10.1007/BF00285660
[50]  Vogt, P.R. (1972) Evidence for Global Synchronism in Mantle Plume Convection, and Possible Significance for Geology. Nature, 240, 338.
https://doi.org/10.1038/240338a0
[51]  Vogt, P.R. (1979) Global Magmatic Episodes: New Evidence and Implications for the Steady-State Mid-Oceanic Ridge. Geology, 7, 93-98.
https://doi.org/10.1130/0091-7613(1979)7<93:GMENEA>2.0.CO;2
[52]  Chauvel, C., Maury, R.C., Blais, S., Lewin, E., Guillou, H., Guille, G., Rossi, P. and Gutscher, M.-A. (2012) The Size of Plume Heterogeneities Constrained by Marquesas Isotopic Stripes. Geochemistry, Geophysics, Geosystems, 13, Q07005.
https://doi.org/10.1029/2012GC004123
[53]  Duncan, R.A. and McDougall, I. (1974) Migration of Volcanism with Time in the Marquesas Islands, French Polynesia. Earth and Planetary Science Letters, 21, 414-420.
https://doi.org/10.1016/0012-821X(74)90181-2
[54]  Gutscher, M.-A., Olivet, J.-L., Aslanian, D., Eissen, J.-P. and Maury, R. (1999) The “Lost Inca Plateau”: Cause of Flat Subduction beneath Peru? Earth and Planetary Science Letters, 171, 335-341.
https://doi.org/10.1016/S0012-821X(99)00153-3
[55]  McNutt, M.K., Caress, D., Reynolds, J., Jordahl, K. and Duncan, R. (1997) Failure of Plume Theory to Explain Midplate Volcanism in the Southern Austral Islands. Nature, 389, 479.
https://doi.org/10.1038/39013
[56]  Coffin, M.F. and Eldholm, O. (1994) Large Igneous Provinces: Crustal Structure, Dimensions, and External Consequences. Reviews of Geophysics, 32, 1-36.
https://doi.org/10.1029/93RG02508
[57]  Fitton, J. (1987) The Cameroon Line, West Africa: A Comparison between Oceanic and Continental Alkaline Volcanism. Geological Society, London, Special Publications, 30, 273-291.
https://doi.org/10.1144/GSL.SP.1987.030.01.13
[58]  Rankenburg, K., Lassiter, J. and Brey, G. (2004) Origin of Megacrysts in Volcanic Rocks of the Cameroon Volcanic Chain-Constraints on Magma Genesis and Crustal Contamination. Contributions to Mineralogy and Petrology, 147, 129-144.
https://doi.org/10.1007/s00410-003-0534-2
[59]  Woolley, A. and Kjarsgaard, B. (2008) Carbonatite Occurrences of the World: Map and Database. Geological Survey of Canada. Open File 5796.
https://doi.org/10.4095/225115
[60]  Bell, K. (2004) Carbonatite. In: Selley, R.C., Cocks, R. and Plimer, I., Eds., Encyclopedia of Geology, Set. Academic Press, Cambridge, 217-233.
[61]  Faccenna, C., Piromallo, C., Crespo-Blanc, A., Jolivet, L. and Rossetti, F. (2004) Lateral Slab Deformation and the Origin of the Western Mediterranean Arcs. Tectonics, 23, TC1012.
https://doi.org/10.1029/2002TC001488
[62]  Krijgsman, W. and Langereis, C. (2000) Magnetostratigraphy of the Zobzit and Koudiat Zargasections (Taza-Guercif Basin, Morocco): Implications for the Evolution of the Rifian Corridor. Marine and Petroleum Geology, 17, 359-371.
https://doi.org/10.1016/S0264-8172(99)00029-X
[63]  Capella, W., Matenco, L., Dmitrieva, E., Roest, W.M., Hessels, S., Hssain, M., Chakor-Alami, A., Sierro, F.J. and Krijgsman, W. (2017) Thick-Skinned Tectonics Closing the Rifian Corridor. Tectonophysics, 710, 249-265.
https://doi.org/10.1016/j.tecto.2016.09.028
[64]  Dewey, J., Helman, M., Knott, S., Turco, E. and Hutton, D. (1989) Kinematics of the Western Mediterranean. Geological Society, London, Special Publications, 45, 265-283.
https://doi.org/10.1144/GSL.SP.1989.045.01.15
[65]  Hsü, K.J., Cita, M.B. and Ryan, W.B.F. (1973) The Origin of the Mediterranean Evaporites. U.S. Govt. Printing Office, Washington DC.
[66]  Ryan, W.B. and Cita, M.B. (1978) The Nature and Distribution of Messinian Erosional Surfaces—Indicators of a Several-Kilometer-Deep Mediterranean in the Miocene. Marine Geology, 27, 193-230.
https://doi.org/10.1016/0025-3227(78)90032-4
[67]  Krijgsman, W., Hilgen, F., Raffi, I., Sierro, F.J. and Wilson, D. (1999) Chronology, Causes and Progression of the Messinian Salinity Crisis. Nature, 400, 652.
https://doi.org/10.1038/23231
[68]  Duggen, S., Hoernle, K., van den Bogaard, P. and Harris, C. (2004) Magmatic Evolution of the Alboran Region: The Role of Subduction in Forming the Western Mediterranean and Causing the Messinian Salinity Crisis. Earth and Planetary Science Letters, 218, 91-108.
https://doi.org/10.1016/S0012-821X(03)00632-0
[69]  Adams, C., Benson, R.H., Kidd, R., Ryan, W. and Wright, R. (1977) The Messinian Salinity Crisis and Evidence of Late Miocene Eustatic Changes in the World Ocean. Nature, 269, 383.
https://doi.org/10.1038/269383a0
[70]  Ben-Gai, Y., Ben-Avraham, Z., Buchbinder, B. and Kendall, C.G.S.C. (2005) Post-Messinian Evolution of the Southeastern Levant Basin Based on Two-Dimensional Stratigraphic Simulation. Marine Geology, 221, 359-379.
https://doi.org/10.1016/j.margeo.2005.03.003
[71]  Bache, F., Olivet, J.L., Gorini, C., Rabineau, M., Baztan, J., Aslanian, D. and Suc, J.-P. (2009) Messinian Erosional and Salinity Crises: View from the Provence Basin (Gulf of Lions, Western Mediterranean). Earth and Planetary Science Letters, 286, 139-157.
https://doi.org/10.1016/j.epsl.2009.06.021
[72]  Lofi, J., Gorini, C., Berné, S., Clauzon, G., Dos Reis, A.T., Ryan, W.B. and Steckler, M.S. (2005) Erosional Processes and Paleo-Environmental Changes in the Western Gulf of Lions (SW France) during the Messinian Salinity Crisis. Marine Geology, 217, 1-30.
https://doi.org/10.1016/j.margeo.2005.02.014
[73]  Gorini, C., Lofi, J., Duvail, C., Dos Reis, A.T., Guennoc, P., Lestrat, P. and Mauffret, A. (2005) The Late Messinian Salinity Crisis and Late Miocene Tectonism: Interaction and Consequences on the Physiography and Post-Rift Evolution of the Gulf of Lions Margin. Marine and Petroleum Geology, 22, 695-712.
https://doi.org/10.1016/j.marpetgeo.2005.03.012
[74]  Duggen, S., Hoernle, K., Van den Bogaard, P., Rüpke, L. and Morgan, J.P. (2003) Deep Roots of the Messinian Salinity Crisis. Nature, 422, 602.
https://doi.org/10.1038/nature01553
[75]  Berggren, W.A., Hilgen, F.J., Langereis, C.G., Kent, D.V., Obradovich, J.D., Raffi, I., Raymo, M.E. and Shackleton, N.J. (1995) Late Neogene Chronology: New Perspectives in High-Resolution Stratigraphy. Geological Society of America Bulletin, 107, 1272-1287.
https://doi.org/10.1130/0016-7606(1995)107<1272:LNCNPI>2.3.CO;2
[76]  Hilgen, F., Bissoli, L., Iaccarino, S., Krijgsman, W., Meijer, R., Negri, A. and Villa, G. (2000) Integrated Stratigraphy and Astrochronology of the Messinian GSSP at Oued Akrech (Atlantic Morocco). Earth and Planetary Science Letters, 182, 237-251.
https://doi.org/10.1016/S0012-821X(00)00247-8
[77]  Hilgen, F., Iaccarino, S., Krijgsman, W., Villa, G., Langereis, C. and Zachariasse, W. (2000) The Global Boundary Stratotype Section and Point (GSSP) of the Messinian Stage (Uppermost Miocene). Episodes, 23, 172-178.
https://doi.org/10.18814/epiiugs/2000/v23i3/004
[78]  Van Couvering, J.A., Castradori, D., Cita, M.B., Hilgen, F.J. and Rio, D. (2000) The Base of the Zanclean Stage and of the Pliocene Series. Episodes, 23, 179-187.
https://doi.org/10.18814/epiiugs/2000/v23i3/005
[79]  Gradstein, F.M., Ogg, J.G., Smith, A.G., Bleeker, W. and Lourens, L.J. (2004) A New Geologic Time Scale, with Special Reference to Precambrian and Neogene. Episodes, 27, 83-100.
https://doi.org/10.18814/epiiugs/2004/v27i2/002
[80]  Ogg, J.G., Ogg, G. and Gradstein, F.M. (2016) A Concise Geologic Time Scale: 2016. Elsevier, Amsterdam.
[81]  Rozenbaum, A.G., Sandler, A., Stein, M. and Zilberman, E. (2019) The Sedimentary and Environmental History of Tortonian-Messinian Lakes at the East Mediterranean Margins (Northern Israel). Sedimentary Geology, 383, 268-292.
https://doi.org/10.1016/j.sedgeo.2018.12.005
[82]  Ben-Avraham, Z. and Katsman, R. (2015) The Formation of Graben Morphology in the Dead Sea Fault, and Its Implications. Geophysical Research Letters, 42, 6989-6996.
https://doi.org/10.1002/2015GL065111
[83]  Ben-Avraham, Z., Lazar, M., Schattner, U. and Marco, S. (2005) The Dead Sea Fault and Its Effect on Civilization. In: Wenzel, F., Ed., Lecture Notes in Earth Sciences: Perspectives in Modern Seismology, Springer Verlag, Heidelberg, 147-170.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133