All Title Author
Keywords Abstract

Publish in OALib Journal
ISSN: 2333-9721
APC: Only $99

ViewsDownloads

Relative Articles

More...

Estimation of the Power of the Anomalous Microwave Emission

DOI: 10.4236/wjcmp.2020.103007, PP. 105-117

Keywords: Anomalous Microwave Emission, Spinning Dust, Power of Emitted Radiation

Full-Text   Cite this paper   Add to My Lib

Abstract:

Context and Background: The product of the electromagnetic (EM) wave’s power P times its period τ, i.e. , is the amount of energy conserved in EM wave’s absorption in matter. Whether is the amount of energy conserved in the emission of EM waves from matter is not assessed. Motivation: In this research, we perform a computational study to explore the ability of to represent the amount of energy conserved in EM wave’s emission from matter. Hypothesis: Since the magnitude of the power P of emitted EM waves computed through Larmor’s formula for a rotating dipole is excessively small, we alternatively hypothesize that and the law of conservation of energy can lead to a realistic estimation of P. Methods: We estimate the power PAME of the anomalous microwave emission (AME), a well-characterized radiation generated in the interstellar medium (ISM) by spinning dust grains, and one possible source of contamination of the cosmic microwave background (CMB). For our estimation of

References

[1]  Boone, D.E., Jackson, C.H., Swecker, A.T., Hergenrather, J.S., Wenger, K.S., Kokhan, O., Terzić, B. Melnikov, I., Ivanov, I.N., Stevens, E.C. and Scarel, G. (2018) Probing the Wave Nature of Light-Matter Interaction. World Journal of Condensed Matter Physics, 8, 62-89.
https://doi.org/10.4236/wjcmp.2018.82005
[2]  Gordon, A.L. and Scarel, G. (2018) Interaction in the Steady State between Electromagnetic Waves and Matter. World Journal of Condensed Matter Physics, 8, 171-184.
https://doi.org/10.4236/wjcmp.2018.84012
[3]  Scarel, G. and Stevens, E.C. (2019) The Effect of Infrared Light’s Power on the Infrared Spectra of Thin Films. World Journal of Condensed Matter Physics, 9, 1-21.
https://doi.org/10.4236/wjcmp.2019.91001
[4]  Scarel, G. (2019) Quantum and Non-Quantum Formulation of Eye’s Adaptation to Light’s Intensity. World Journal of Condensed Matter Physics, 9, 62-74.
https://doi.org/10.4236/wjcmp.2019.93005
[5]  Scarel, G. (2019) The Role of Pτ in the Photothermoelectric Effect and in Photoredox Catalysis Reactions. World Journal of Condensed Matter Physics, 9, 91-101.
https://doi.org/10.4236/wjcmp.2019.94007
[6]  Yang, Y., Massuda, A., Roques-Carmes, C., Kooi, S.E., Christensen, T., Johnson, S.G., Joannopoulos, J.D., Miller, O.D., Kaminer, I. and Soljačić, M. (2018) Maximal Spontaneous Photon Emission and Energy Loss from Free Electrons. Nature Physics, 14, 894-899.
https://doi.org/10.1038/s41567-018-0180-2
[7]  Roques-Carmes, C., Kooi, S.E., Yang, Y., Massuda, A., Keathley, P.D., Zaidi, A., Yang, Y.J., Joannopoulos, J.D., Berggren, K.K., Kaminer, I. and Soljačić, M. (2019) Towards Integrated Tunable All-Silicon Free-Electron Light Sources. Nature Communications, 10, 3176.
https://doi.org/10.1038/s41467-019-11070-7
[8]  Ade, P.A.R., et al. (Planck Collaboration) (2011) Planck Early Results. XX. New Light on Anomalous Microwave Emission from Spinning Dust Grains. Astronomy and Astrophysics, 536, A20-A37.
[9]  Ade, P.A.R., et al. (Planck Collaboration) (2014) Planck Intermediate Results. A Study of Anomalous Microwave Emission in Galactic Clouds. Astronomy and Astrophysics, 565, A103-A131.
[10]  Draine, B.T. and Lazarian, A. (1998) Diffuse Galactic Emission from Spinning Dust Grains. The Astrophysical Journal, 494, L19-L22.
https://doi.org/10.1086/311167
[11]  Draine, B.T. and Lazarian, A. (1998) Electric Dipole Radiation from Spinning Dust Grains. The Astrophysical Journal, 508, 157-179.
https://doi.org/10.1086/306387
[12]  Ichiki, K. (2014) CMB Foreground: A Concise Review. Progress in Theoretical and Experimental Physics, 2014, 06B109.
https://doi.org/10.1093/ptep/ptu065
[13]  Hensley, B.S., Draine, B.T. and Meisner, A.M. (2016) A Case against Spinning PAHs as the Source of the Anomalous Microwave Emission. The Astrophysical Journal, 827, 45-58.
https://doi.org/10.3847/0004-637X/827/1/45
[14]  Hoang, T. Vinh, N.-A. and Lan, N.-Q. (2016) Spinning Dust Emission from Ultra-Small Silicates: Emissivity and Polarization Spectrum. The Astrophysical Journal, 824, 18-29.
https://doi.org/10.3847/0004-637X/824/1/18
[15]  Hoang, T. and Lazarian, A. (2016) Polarization of Magnetic Dipole Emission and Spinning Dust Emission from Magnetic Nanoparticles. The Astrophysical Journal, 821, 91-110.
https://doi.org/10.3847/0004-637X/821/2/91
[16]  Greaves, J.S., Scaife, A.M.M., Frayer, D.T., Green, D.A., Mason, B.S. and Smith, A.M.S. (2018) Anomalous Microwave Emission from Spinning Nanodiamonds around Stars. Nature Astronomy, 2, 662-667.
https://doi.org/10.1038/s41550-018-0495-z
[17]  Kogut, A., Banday, A.J., Bennett, C.L., Górski, K.M., Hinshaw, G., Smoot, G.F. and Wright, E.L. (1996) Microwave Emission at High Galactic Latitudes in the Four-Year DMR Sky Map. The Astrophysical Journal, 464, L5-L9.
https://doi.org/10.1086/310072
[18]  de Oliveira-Costa, A., Kogut, A., Devlin, M.J., Netterfield, C.B., Page, L.A. and Wollack, E.J. (1997) Galactic Microwave Emission at Degree Angular Scales. The Astrophysical Journal, 527, L17-L20.
https://doi.org/10.1086/310684
[19]  Leitch, E.M., Readhead, A.C.S., Pearson, A.C.S. and Myers, S.T. (1997) An Anomalous Component of Galactic Emission. The Astrophysical Journal, 486, L23-L26.
https://doi.org/10.1086/310823
[20]  Hoang, T., Lan, N.Q., Vinh, N.-A. and Kim, Y.-J. (2018) Spinning Dust Emission from Circumstellar Disks and Its Role in Excess Microwave Emission. The Astrophysical Journal, 862, 116-131.
https://doi.org/10.3847/1538-4357/aaccf0
[21]  De Oliveira-Costa, A., Tegmark, M., Gutiérrez, C.M., Jones, A.W., Davies, R.D., Lasenby, A.N., Rebolo, R. and Watson, R.A. (1999) Cross-Correlation of Tenerife Data with Galactic Templates-Evidence for Spinning Dust? The Astrophysical Journal, 527, L9-L12.
https://doi.org/10.1086/312384
[22]  Finkbeiner, D.P., Schlegel, D.J., Frank, C. and Heiles, C. (2002) Tentative Detection of Electric Dipole Emission from Rapidly Rotating Dust Grains. The Astrophysical Journal, 566, 898-904.
https://doi.org/10.1086/338225
[23]  Watson, A., Rebolo, R., Rubĩno-Martín, J.A., Hildebrandt, S., Gutiérrez, C.M., Fernández-Cerezo, S., Hoyland, R.J. and Battistelli, E.S. (2005) Detection of Anomalous Microwave Emission in the Perseus Molecular Cloud with the Cosmosomas Experiment. The Astrophysical Journal, 624, L89-L92.
https://doi.org/10.1086/430519
[24]  Todorovíc, M., Davies, R.D., Dickinson, C., Davis, R.J. and Cleary, K.A. (2010) A 33 GHz VSA Survey of the Galactic Plane from 27 to 46 Degrees. Monthly Notices of the Royal Astronomical Society, 406, 1629-1643.
https://doi.org/10.1111/j.1365-2966.2010.16809.x
[25]  Scaife, A., Green, D.A., Battye, R.A., Davies, R.D., Davis, R.J., Dickinson, C., Franzen, T., Génova-Santos, R., Grainge, K., Hafez, Y.A., Hobson, M.P., Lasenby, A., Pooley, G.G., Rajguru, N., Rebolo, R., Rubiño-Martin, J.A., Saunders, R.D.E., Scott, P.F., Titterington, D., Waldram, E. and Watson, R.A. (2007) Constraints on Spinning Dust towards Galactic Targets with the Very Small Array: A Tentative Detection of Excess Microwave Emission towards 3C396. Monthly Notices of the Royal Astronomical Society, 377, L69-L73.
https://doi.org/10.1111/j.1745-3933.2007.00305.x
[26]  Casassus, S., Dickinson, C., Cleary, K., Paladini, R., Etxaluze, M., Lim, T., White, G.J., Burton, M., Indermuehle, B., Otmar Stahl, O. and Roche, P. (2006) Centimeter-Wave Continuum Radiation from the Ophiuchi Molecular Cloud. Monthly Notices of the Royal Astronomical Society, 391, 1075-1090.
https://doi.org/10.1111/j.1365-2966.2008.13954.x
[27]  Dickinson, C., Davies, R.D., Allison, J.R., Bond, J.R., Casassus, S., Cleary, K., Davis, R.J., Jones, M.E., Mason, B.S., Myers, S.T., Pearson, T.J., Readhead, A.C.S., Sievers, J.L., Taylor, A.C., Todorovíc, M., White, G.J. and Wilkinson, P.N. (2009) Anomalous Microwave Emission from the H II Region RCW175C. The Astrophysical Journal, 690, 1585-1589.
https://doi.org/10.1088/0004-637X/690/2/1585
[28]  Davies, R.D., Dickinson, C., Banday, A.J., Jaffe, T.R., Górski, K.M. and Davis, R.J. (2006) A Determination of the Spectra of galactic Components Observed by the Wilkinson Microwave Anisotropy Probe. Monthly Notices of the Royal Astronomical Society, 370, 1125-1139.
https://doi.org/10.1111/j.1365-2966.2006.10572.x
[29]  Ĺopez-Caraballo, C.H., Rubĩno-Martín, J.A., Rebolo, R. and Génova-Santos, R. (2011) Constraints on the Polarization of the Anomalous Microwave Emission in the Perseus Molecular Complex from Seven Year WMAP Data. The Astrophysical Journal, 729, 25-35.
https://doi.org/10.1088/0004-637X/729/1/25
[30]  Génova-Santos, R., Rebolo, R., Rubiño-Martin, J.A., Ĺopez-Caraballo, C.H. and Hildebrandt, S.R. (2011) Detection of Anomalous Microwave Emission in the Pleiades Reflection Nebula with WMAP and the COSMOSOMAS Experiment. The Astrophysical Journal, 743, 67-78.
https://doi.org/10.1088/0004-637X/743/1/67
[31]  Stevenson, M.A. (2014) Derivation of Analytical Approximation of the Spectrum of Spinning Dust Emission. The Astrophysical Journal, 781, 113-124.
https://doi.org/10.1088/0004-637X/781/2/113
[32]  Draine, B.T. and Hensley, B.S. (2016) Quantum Suppression of Alignment in Ultrasmall Grains: Microwave Emission from Spinning Dust Will Be Negligibly Polarized. The Astrophysical Journal, 831, 59-73.
https://doi.org/10.3847/0004-637X/831/1/59
[33]  Hoang, T. and Tram, L.N. (2019) Dust Rotational Dynamics in C-Shocks: Rotational Disruption of Nanoparticles by Stochastic Mechanical Torques and Spinning Dust Emission. The Astrophysical Journal, 877, 36-52.
https://doi.org/10.3847/1538-4357/ab1845
[34]  Ali-Haïmoud, Y. (2013) Spinning Dust Radiation: A Review of the Theory. Advances in Astronomy, 2013, Article ID: 462697.
https://doi.org/10.1155/2013/462697
[35]  Bertram, E., Glover, S.C.O., Clark, P.C., Ragan, S.E. and Klessen, R.S. (2016) Synthetic Observations of Molecular Clouds in a Galactic Center Environment: I. Studying Maps of Column Density and Integrated Intensity. Monthly Notices of the Royal Astronomical Society, 455, 3763-3780.
https://doi.org/10.1093/mnras/stv2619

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413