|
- 2019
基于长短时记忆网络(LSTM)的蟹塘溶解氧估算优化方法DOI: 10.12133/j.smartag.2019.1.3.201905-SA004 Keywords: 溶解氧,长短时记忆网络,损失函数,平均绝对百分比误差 Abstract: 水中溶解氧含量低会影响螃蟹的成活率,保证低溶解氧时刻溶解氧的预测精度非常重要。目前,溶解氧传感器价格昂贵且易遭受腐蚀,因此通过相关变量来间接估计溶解氧浓度有重要的意义。本研究在长短时记忆网络(LSTM)模型的基础上,优化LSTM反向传播时的损失函数,提出了提高低溶解氧含量估算精度的溶解氧预测模型(LDO-LSTM)。LDO-LSTM的损失函数是在平均绝对百分比误差(MAPE)基础上,根据溶解氧值的变化趋势和溶解氧浓度大小,分别赋予不同权值的权重函数,并通过均方根误差(RMSE)和平均绝对百分比误差(MAPE)来评估LDO-LSTM和LSTM在不同范围的溶解氧估算能力。对模型的测试试验结果表明:在溶解氧高于6mg/L时,LDO-LSTM和LSTM的RMSE、MAPE差值稳定在0.1左右;在溶解氧低于6mg/L时,LDO-LSTM的RMSE值和MAPE值分别比LSTM低0.25和0.139,说明了LDO-LSTM网络不但可以保证整体溶氧预测精度,而且能够提高较低溶解氧值的估算精度。本研究对于降低水产养殖成本、提高溶解氧估算精度有着重要的作用
|