This article first talks
about railways in general and ballast in particular. An inventory is then made
on the modernization of the Senegalese ballast railways. In the second phase,
an experimental work of characterization of basaltic aggregates of Diack
(Locality of Ngoundiane, Thiès region, Senegal) is presented. The grain size
studied is 25/50 mm as for any material studied for use as railway ballast.
Experimental work presented consists of the characterization of the shape of an
aggregate using the NF P 18-301 standard. The test consists of comparing the
volume of the aggregate to that of an equivalent sphere with the largest
diameter of the aggregate, by calculating the average volume coefficient. With
a Representative Elementary Volume (REV) of 6 aggregates, the volume
coefficient “Cv” fluctuates between 0.27 and 0.49 with an average
volume coefficient of 0.39 which is well above 0.15. The
grains studied are polyhedral and therefore have a high mechanical resistance.
References
[1]
Regional Express Train (TER) Dakar (2016) Summary of the Strategic Environmental and Social Study. African Development Bank Group.
https://www.afdb.org/fileadmin/uploads/afdb/Documents/Environmental-and-Social-Assessments/Senegal-Projet_de_Train_Express_Regional_de_Dakar-Resume_EESS-Novembre_2016.pdf
[2]
Sow, L. (2019) Ballasted Railways in Senegal-Characterization of Bandia Limestone and Diack Basalt for Use as Ballast Materials. International Journal of Applied Engineering Research, 14, 3396-3405.
https://www.ripublication.com/ijaer19/ijaerv14n15_10.pdf
[3]
Kansango, M.P., Kavula, N.E., Sow, L. and Lunda, H.J.M. (2019) Cartographie Géotechnique par Deep Learning Approche par Réseaux de Neurones Artificiels. European Scientific Journal, 15, 233-251.
https://doi.org/10.19044/esj.2019.v15n12p233
[4]
Deiros, I., Voivret, C., Combe, G. and Emeriault, F. (2016) Quantifying Degradation of Railway Ballast Using Numerical Simulations of Micro-Deval Test and in-Situ Conditions. Procedia Engineering, 146, 1016-1023.
https://doi.org/10.1016/j.proeng.2016.06.096
[5]
Diedhiou, A., Sow, L. and Dione, A. (2020) Contribution to Comparative Study of Physical-Chemical Characteristics of Diack Basalt and Bandia Limestone for Use in Railway Engineering. Geomaterials, 10, 25-34.
https://doi.org/10.4236/gm.2020.102002
[6]
Deiros, I., Combe, G., Emeriault, F., Voivret, C. and Ferellec, J.F. (2019) X-Ray CT Analysis of the Evolution of Ballast Grain Morphology along a Micro-Deval Test: Key Role of the Asperity Scale. Granular Matter, 21, 1-12.
https://doi.org/10.1007/s10035-019-0881-y
[7]
Sow, L. (2018) Approche couplée expérimentation-modélisation multi-échelle pour la détermination du comportement mécanique des graves routières traitées aux liants. Application à la valorisation des Machefers d’Incinération de Déchets Non Dangereux. PhD Thesis, INSA Rennes, France, 200.
https://www.theses.fr/2018ISAR0001
[8]
Sow, L., Bernard, F., Kamali-Bernard, S. and Kébé, C.M.F. (2018) Experiment-Based Modelling of the Mechanical Behaviour of Non-Hazardous Waste Incineration Bottom Ashes Treated by Hydraulic Binder. MATEC Web of Conferences, 149.
https://doi.org/10.1051/matecconf/201814901038
[9]
Sow, L., Bernard, F., Kamali-Bernard, S. and Kébé, C.M.F. (2018) Mesoscale Modeling of the Temperature-Dependent Viscoelastic Behavior of a Bitumen-Bound Gravels. Coupled Systems Mechanics, 7, 509-524.
[10]
Azéma, é. (2007) Digital Study of Granular Materials with Polyhedral Grains: Quasi-Static Rheology, Vibration Dynamics, Application to the Ballast Stuffing Process. PhD Thesis, Montpellier University, Montpellier, France.
[11]
Saussine, G. (2004) Contribution à la modélisation de granulats tridimensionnels: Application au ballast. PhD Thesis, Montpellier University, Montpellier, France.
https://tel.archives-ouvertes.fr/tel-00077519
[12]
Ricci, L. (2006) Discrete and Continuous Modelling of the Ballasted Railway Track. PhD Thesis, Navier-Laboratory Institute Material Analysis and Identification (LCPC/ENPC), France.
[13]
Guérin, N. (1996) Experimental and Numerical Approach to the Behaviour of Railway Ballast. PhD Thesis, National School of Bridges and Roads (ENPC), France.
[14]
Calon, N., Lambert, L., Robinet, A., Trinh, V.N., Cui, Y.J., Canou J., Dupla, J.C., Tang, A.M. and Schoen, O. (2010) Hydromechanical Characterization of Materials Used in Old Railway Platforms.
[15]
Sow, L., Kamali-Bernard, S., Bartier, O., Mauvoisin, G. and Bernard, F. (2018) Experimental Estimation of the Elastic Modulus of Non-Hazardous Waste Incineration Bottom Ash Aggregates by Indentation Tests-Microanalysis of particles by Scanning Electron Microscopy. Advanced Materials Research, 1145, 80-84.
https://doi.org/10.4028/www.scientific.net/AMR.1145.80
[16]
Sow, L., Kamali-Bernard, S., Mauvoisin, G., Bartier, O. and Bernard, F. (2019) Original Experimental Campaign of Indentation Instrumented on Aggregates of Non-Hazardous Waste Incineration Bottom Ash to Study the Heterogeneity of their Rigidity. Key Engineering Materials, 805, 177-182.
https://doi.org/10.4028/www.scientific.net/KEM.805.177
[17]
Robinet, A. (2008) The Treated form Layers in Railway Bedding Structures. Thesis for an Engineering Degree from CNAM, France.
[18]
Sow, L. (2020) Study of the Behaviour of Senegalese Ballast Materials during Compaction with the C-Mould: Case of Bandia Limestone and Diack Basalt. Key Engineering Materials, 831, 81-86.
https://doi.org/10.4028/www.scientific.net/KEM.831.81
[19]
Elysée, K.N., Portance, K.M., Sow, L., Bilez, N.B., Corneille, K.M. and Obed, T.K. (2020) Coupling Discriminating Statistical Analysis and Artificial Intelligence for Geotechnical Characterization of the Kampemba’s Municipality Soils (Lubumbashi, DR Congo). Geomaterials, 10, 35-55. https://doi.org/10.4236/gm.2020.103003
[20]
Trinh, V.N. (2011) Comportement hydromécanique des matériaux constitutifs de plateformes ferroviaires anciennes. PhD Thesis, Université Paris-Est, France.
[21]
Kouroussis, G. (2009) Modelling of the Vibration Effects of Rail Traffic on the Environment. PhD Thesis, Polytechnic Faculty of Mons, France.
[22]
Athanassiadis, A. G., Miskin, M. Z., Kaplan, P., Rodenberg, N., Lee, S.H., Merritt, J., Brown, E., Amend, J., Lipson, H. and Jaeger, H.M. (2017) Particle Shape Effects on the Stress Response of Granular Packings. Soft Matter, 10, 48-59.
https://doi.org/10.1039/C3SM52047A
[23]
Börzsönyi, T., Somfai, E., Szabó, B., Wegner, S., Ashour, A. and Stannarius, R. (2017) Elongated Grains in a Hopper. EPJ Web of Conferences, 140, Article No. 06017. https://doi.org/10.1051/epjconf/201714006017
[24]
Aissoun, B.M. (2011) Etude de l’influence des caractéristiques des granulats sur la performance des bétons fluides à rhéologie adaptée. Sherbrooke (Québec), Canada.
https://savoirs.usherbrooke.ca/bitstream/handle/11143/1590/MR83651.pdf?sequence=1&isAllowed=y
[25]
Hafid, H, (2011) Influence des paramètres morphologiques des granulats sur le comportement rhéologique des bétons frais: Etude sur systèmes modèles. PhD Thesis, Université Paris-Est, France, 160.
https://tel.archives-ouvertes.fr/tel-00695922/document
[26]
Ouhbi, N. (2017) Une description morphologique précise des grains pour l’étude numérique des propriétés mécaniques du ballast ferroviaire. PhD Thesis, Université Paris-Est, France. https://pastel.archives-ouvertes.fr/tel-01730240
[27]
AFNOR (2003) Granulats pour ballasts de voies ferrées. Standard, France.