全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Time Advancement of the Navier-Stokes Equations: p-Adaptive Exponential Methods

DOI: 10.4236/jfcmv.2020.82004, PP. 63-76

Keywords: Exponential Time Discreitzation, Navier-Stokes Equation, Discontinuous Galerkin, Curved Grids

Full-Text   Cite this paper   Add to My Lib

Abstract:

An adaptive exponential time advancement framework is developed for solving the multidimensional Navier-Stokes equations with a variable-order discontinuous Galerkin (DG) discretization on hybrid unstructured curved grids. The adaptive framework is realized with cell-wise, variable-order DG refinements and a dynamic assembly of elemental Jacobian matrices. The accuracy and performance gain are investigated for several benchmark cases up to a realistic, three-dimensional rotor flow. Numerical results are shown to be more efficient than the use of uniform-order exponential DG for simulating viscous flows.

References

[1]  Li, S.-J. (2013) A Parallel Discontinuous Galerkin Method with Physical Orthogonal Basis on Curved Elements. Procedia Engineering, 61, 144-151.
https://doi.org/10.1016/j.proeng.2013.07.107
[2]  Li, S.-J., Wang, Z.J., Ju, L. and Luo, L.-S. (2017) Explicit Large Time Stepping with a Second-Order Exponential Time Integrator Scheme for Unsteady and Steady Flows. 55th AIAA Aerospace Sciences Meeting, Grapevine, 9-13 January 2017, AIAA Paper 2017-0753.
https://doi.org/10.2514/6.2017-0753
[3]  Li, S.-J., Luo, L.-S., Wang, Z.J. and Ju, L. (2018) An Exponential Time-Integrator Scheme for Steady and Unsteady Inviscid Flows. Journal of Computational Physics, 365, 206-225.
https://doi.org/10.1016/j.jcp.2018.03.020
[4]  Li, S.-J. (2018) Efficient p-Multigrid Method Based on an Exponential Time Discretization for Compressible Steady Flows. arXiv:1807.0115.
[5]  Li, S.-J., Wang, Z.J., Ju, L. and Luo, L.-S. (2018) Fast Time Integration of Navier-Stokes Equations with an Exponential-Integrator Scheme. AIAA Aerospace Sciences Meeting, Kissimmee, 8-12 January 2018, AIAA Paper 2018-0369.
https://doi.org/10.2514/6.2018-0369
[6]  Li, S.-J. and Ju, L. (2019) Exponential Time-Marching Method for the Unsteady Navier-Stokes Equations. AIAA Scitech 2019 Forum, San Diego, 7-11 January 2019, AIAA Paper 2019-0907.
https://doi.org/10.2514/6.2019-0907
[7]  Caradonna, F.X. and Tung, C. (1981) Experimental and Analytical Studies of a Model Helicopter Rotor in Hover. NASA Technical Memorandum 1981-81232, NASA, Ames Research Center, Moffett Field.
[8]  Bassi, F. and Rebay, S. (1997) A High-Order Accurate Discontinuous Finite Element Method for the Numerical Solution of the Compressible Navier-Stokes Equations. Journal of Computational Physics, 131, 267-279.
https://doi.org/10.1006/jcph.1996.5572
[9]  Persson, P.-O. and Peraire, J. (2006) Sub-Cell Shock Capturing for Discontinuous Galerkin Methods. 44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, 9-12 January 2006, AIAA Paper 2006-112.
https://doi.org/10.2514/6.2006-112
[10]  Cagnone, J.S., et al. (2013) A p-Adaptive LCP Formulation for the Compressible Navier Stokes Equations. Journal of Computational Physics, 233, 324-338.
https://doi.org/10.1016/j.jcp.2012.08.053
[11]  Ghia, U., Ghia, K.N. and Shin, C.T. (1982) High-Resolutions for Incompressible Flow Using the Navier-Stokes Equations and a Multigrid Method. Journal of Computational Physics, 48, 387-411.
https://doi.org/10.1016/0021-9991(82)90058-4

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133