This report deals with introducing two new techniques based on a novel concept of complex brightness gradient in quantitative schlieren images, “inverse process” and “multi-path integration” for image-noise reduction. Noise in schlieren images affects the projections (density thickness) images of computerized tomography (CT). One spot noise in the schlieren image appears in a line shape in the density thickness image. Noise effect like an infectious disease spreads from a noisy pixel to the next pixel in the direction of single-path integration. On the one hand, the noise in the schlieren image reduces the quality of the image and quantitative analysis and is undesirable; on the other it is unavoidable. Therefore, the importance of proper noise reduction techniques seems essential and tangible. In the present report, a novel technique “multi-path integration” is proposed for noise reduction in projections images of CT. Multi-path integration is required the schlieren brightness gradient in two orthogonal directions. The 20-directional quantitative schlieren optical system presents only images of schlieren brightness in the horizontal gradient and another 20-directional optical system seems necessary to obtain vertical schlieren brightness gradient, simultaneously. Using the “inverse process”, a new technique enables us to obtain vertical schlieren brightness gradient from horizontal experimental data without the necessity of a new optical system and can be used for obtaining any optional directions of schlieren brightness gradient.
References
[1]
Settles, G.S. and Hargather, M.J. (2017) A Review of Recent Developments in Schlieren and Shadowgraph Techniques. Measurement Science and Technology, 28, 1-25. https://doi.org/10.1088/1361-6501/aa5748
[2]
Ishino, Y., Hayashi, N., Bt Abd Razak, I.F. and Saiki, Y. (2015) 3D-CT Measurement of Instantaneous Density Distributions of High-Speed Premixed Turbulent Burner Flames with a Multi-Directional Schlieren Camera (Effects of Flow Velocity on 3D Flame Front Shape). Proceedings of the 1st Thermal and Fluids Engineering Summer Conference, New York, 9-12 August 2015, 121-131.
https://doi.org/10.1615/TFESC1.cbf.012970
[3]
Ishino, Y., Hayashi, N., Bt Abd Razak, I.F., Kato, T., Kurimoto, Y. and Saiki, Y. (2015) 3D-CT (Computer Tomography) Measurement of an Instantaneous Density Distribution of Turbulent Flames with a Multi-Directional Quantitative Schlieren Camera (Reconstructions of High-Speed Premixed Burner Flames with Different Flow Velocities). Flow, Turbulence and Combustion, 96, 819-835.
https://doi.org/10.1007/s10494-015-9658-5
[4]
Ishino, Y., Hayashi, N., Ishiko, Y., Nazari, A.Z., Nagase, K., Kakimoto, K. and Saiki, Y. (2016) Schlieren 3D-CT Reconstruction of Instantaneous Density Distributions of Spark-Ignited Flame Kernels of Fuel-Rich Propane-Air Premixture. Proceedings of ASME Heat Transfer Summer Conference, Washington DC, 10-14 July 2016, HT2016-7423, 1-10. https://doi.org/10.1115/HT2016-7423
[5]
Ishino, Y., Hayashi, N., Ishiko, Y., Nagase, K., Kakimoto, K., Nazari, A.Z. and Saiki, Y. (2017) 3D Printing of Spark-Ignited Flame Kernels, Experimentally Captured by 3D-Computer Tomography and Multi-Directional Schlieren Photography. Heat Transfer, 139, HT-16-1726. https://doi.org/10.1115/1.4035583
[6]
Nazari, A.Z., Ishino, Y., Motohiro, T., Yamada, R., Ishiko, Y. and Saiki, Y. (2017) Schlieren CT Measurement of 3D Density Distributions of Flame Kernels of Spark-ignited Direct-Injection of Free, Cavity-Guided and Plane-Guided Fuel Jets. Proceedings of the 11th Asia-Pacific Conference on Combustion, Sydney, 10-14 December 2017, 1-4. http://www.anz-combustioninstitute.org/proceedings.php
[7]
Nazari, A.Z., Ishino, Y., Ishiko, Y., Ito, F., Kondo, H., Yamada, R., Motohiro, T., Miyazato, Y. and Nakao, S. (2020) Multi-Schlieren CT Measurements of Supersonic Microjets from Circular and Square Micro Nozzles. Journal of Flow Control, Measurement & Visualization, 8.
[8]
Nazari, A.Z., Ishino, Y., Yamada, R., Motohiro, T., Ito, F., Kondo, H., Miyazato, Y. and Nakao, S. (2018) CT (Computer Tomography) Measurement of 3D Density Distributions of High-Speed Premixed Turbulent Flames (Multi-Path Integration Image-Noise Reduction Technique Based on Novel Concept of Complex Brightness Gradient in Quantitative Schlieren Images). Proceedings of the 18th International Symposium on Flow Visualization, Zurich, 26-29 June 2018, 1-13.
https://doi.org/10.3929/ethz-b-000279202
[9]
Nazari, A.Z., Ishino, Y., Yamada, R., Motohiro, T., Ito, F., Kondo, H., Miyazato, Y. and Nakao, S. (2019) CT (Computer Tomography) Measurement of 3D Density Distributions of Flame: Obtaining Vertical Gradient Schlieren Brightness from Horizontal Gradient for Image-Noise Reduction. Proceedings of the 4th Thermal and Fluids Engineering Conference, Las Vegas, NV, 14-17 April 2019, 185-194.
https://doi.org/10.1615/TFEC2019.cbf.027746
[10]
Huang, C., Gregory, J.W. and Sullivan, J.P. (2007) A Modified Schlieren Technique for Micro Flow Visualization. Measurement Science and Technology, 18, N32-N34.
https://doi.org/10.1088/0957-0233/18/5/N04
[11]
Collicott, S.H. and Salyer, T.R. (1994) Noise Reduction Properties of a Multiple-Source Schlieren System. AIAA Journal, 32, 1683-1688.
https://doi.org/10.2514/3.12160
[12]
Chaloupka, J.L., Woods, M., Aas, J., Hutchins, J. and Thistle, J.D. (2014) Color Schlieren Imaging with a Two-Path, Double Knife Edge System. Optics Express, 22, 8041-8046. https://doi.org/10.1364/OE.22.008041
[13]
Barry, F.W. and Edelman, G.M. (1948) An Improved Schlieren Apparatus. Journal of the Aeronautical Sciences, 15, 364-365. https://doi.org/10.2514/8.11588
[14]
Hadjadj, A. and Kudryavtsev, A. (2005) Computation and Flow Visualization in High-Speed Aerodynamics. Journal of Turbulence, 6, N16.
https://doi.org/10.1080/14685240500209775
[15]
Yokoi, T., Shinohara, H., Hashimoto, T., Yamamoto, T. and Niio, Y. (2000) Implementation and Performance Evaluation of Iterative Reconstruction Algorithms in SPECT: A Simulation Study Using EGS4. Proceedings of the Second International Workshop on EGS, KEK Proceedings, 200-20, 224-234.
http://rcwww.kek.jp/egsconf/proceedings/2iwoegs/yokoi.pdf