全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Seasonal Analysis of Atmospheric Changes in Hudson Bay during 1998-2018

DOI: 10.4236/ajcc.2020.92008, PP. 100-122

Keywords: Climate Change, Sea Surface Temperature, Clouds, NARR Model, Hudson Bay

Full-Text   Cite this paper   Add to My Lib

Abstract:

The main objective of this study is to examine the NARR (North American Regional Reanalysis Model) high-resolution dataset to understand the last two decades dramatic climate changes in Hudson Bay associated with the atmospheric keys by synoptically analysis. The anomalies of the near-surface meteorological parameters such as air temperature, humidity, mean sea level pressure, wind vectors along with cloudiness, precipitation, surface albedo and downward longwave radiation at surface in seasonally based changes have been analysed. The increase in low-level thermal structure leads to changing the near-surface humidity, evaporation, cloudiness, precipitation and downward longwave radiation at the surface. Also, winds have been accelerated associated with anticyclonic curvature development. The results show significant atmospheric changes during the last two decades in Hudson Bay with the highest values mostly during winter and fall seasons in the north, east boundaries and James Bay area. Using the statistical analysis for mean low-level temperature, surface albedo, low-level clouds and evaporation at the surface during nearly recent 2 decades (1998-2018) rather than the normal climatology mean (1981-2010) have revealed the meaningful significant difference for mentioned parameters. The statistical analysis results show that during spring there is a significant positive correlation between low clouds anomaly and 2 m air temperature anomaly rather than other seasons. So, the recent atmospheric changes in the study area as a region located in the Arctic and sub-Arctic can contribute to extra-local and global warming.

References

[1]  Bintanja, R., & Andry, O. (2017). Towards a Rain-Dominated Arctic. Nature Climate Change, 7, 263.
https://doi.org/10.1038/nclimate3240
[2]  Bintanja, R., & Krikken, F. (2016). Magnitude and Pattern of Arctic Warming Governed by the Seasonality of Radiative Forcing. Scientific Reports, 6, Article No. 38287.
https://doi.org/10.1038/srep38287
[3]  Bintanja, R., & Selten, F. M. (2014). Future Increases in Arctic Precipitation Linked to Local Evaporation and Sea-Ice Retreat. Nature, 509, 479.
https://doi.org/10.1038/nature13259
[4]  Bintanja, R., & Van der Linden, E. C. (2013). The Changing Seasonal Climate in the Arctic. Scientific Reports, 3, Article No. 1556.
https://doi.org/10.1038/srep01556
[5]  Blunden, J., & Arndt, D. S. (2012). State of the Climate in 2011. Bulletin of the American Meteorological Society, 93, S1-S282.
https://doi.org/10.1175/2012BAMSStateoftheClimate.1
[6]  Chapman, W. L., & Walsh, J. E. (1993). Recent Variations of Sea Ice and Air Temperature in High Latitudes. Bulletin of the American Meteorological Society, 74, 33-48.
https://doi.org/10.1175/1520-0477(1993)074<0033:RVOSIA>2.0.CO;2
[7]  Comiso, J. C., Parkinson, C. L., Gersten, R., & Stock, L. (2008). Accelerated Decline in the Arctic Sea Ice Cover. Geophysical Research Letters, 35, L01703.
https://doi.org/10.1029/2007GL031972
[8]  Deser, C., & Teng, H. (2008). Evolution of Arctic Sea Ice Concentration Trends and the Role of Atmospheric Circulation Forcing, 1979-2007. Geophysical Research Letters, 35, L02504.
https://doi.org/10.1029/2007GL032023
[9]  Eastman, R., & Warren, S. G. (2010). Interannual Variations of Arctic Cloud Types in Relation to Sea Ice. Journal of Climate, 23, 4216-4232.
https://doi.org/10.1175/2010JCLI3492.1
[10]  Fazel-Rastgar, F. (2019). Hudson Bay Climate Change and Local Winter Wind Circulation. American Journal of Climate Change, 8, 544.
https://doi.org/10.4236/ajcc.2019.84029
[11]  Fazel-Rastgar, F. (2020). The Evidence of Recent Canadian Arctic Climate Change. A Case Study, the Baffin Island. International Journal of Global Warming, 20, 165-185.
https://doi.org/10.1504/IJGW.2020.10027062
[12]  Fazel-Rastgar, F. (in press a). Canadian Arctic Weather System Configuration Related to the Recent Sea Ice Decline and Heat-Wave of Summer 2019. International Journal of Global Warming.
[13]  Fazel-Rastgar, F. (in press b). Synoptic Climatological Approach Associated with Three Recent Summer Heatwaves in the Canadian Arctic. Journal of Water and Climate Change.
[14]  Flanner, M. G., Shell, K. M., Barlage, M., Perovich, D. K., & Tschudi, M. A. (2011). Radiative Forcing and Albedo Feedback from the Northern Hemisphere Cryosphere between 1979 and 2008. Nature Geoscience, 4, 151.
https://doi.org/10.1038/ngeo1062
[15]  Gough, W. A., Cornwell, A. R., & Tsuji, L. J. (2004). Trends in Seasonal Sea Ice Duration in Southwestern Hudson Bay. Arctic, 57, 299-305.
https://doi.org/10.14430/arctic507
[16]  Hansen, J., Sato, M., Ruedy, R., Lo, K., Lea, D. W., & Medina-Elizade, M. (2006). Global Temperature Change. Proceedings of the National Academy of Sciences, 103, 14288-14293.
https://doi.org/10.1073/pnas.0606291103
[17]  Hochheim, K. P., & Barber, D. G. (2010). Atmospheric Forcing of Sea Ice in Hudson Bay during the Fall Period, 1980-2005. Journal of Geophysical Research: Oceans, 115, C05009.
https://doi.org/10.1029/2009JC005334
[18]  Holland, M. M., & Bitz, C. M. (2003). Polar Amplification of Climate Change in Coupled Models. Climate Dynamics, 21, 221-232.
https://doi.org/10.1007/s00382-003-0332-6
[19]  Jeffers, S., Agnew, T. A., Alt, B. T., De Abreu, R., & McCourt, S. (2001). Investigating the Anomalous Sea-Ice Conditions in the Canadian High Arctic (Queen Elizabeth Islands) during Summer 1998. Annals of Glaciology, 33, 507-512.
https://doi.org/10.3189/172756401781818761
[20]  Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha, S., White, G., Woollen, J., & Zhu, Y. (1996). The NCEP/NCAR 40-Year Reanalysis Project. Bulletin of the American Meteorological Society, 77, 437-472.
https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
[21]  Kasting, J. F. (1988). Runaway and Moist Greenhouse Atmospheres and the Evolution of Earth and Venus. Icarus, 74, 472-494.
https://doi.org/10.1016/0019-1035(88)90116-9
[22]  Kay, J. E., & Gettelman, A. (2009). Cloud Influence on and Response to Seasonal Arctic Sea Ice Loss. Journal of Geophysical Research: Atmospheres, 114, D18204.
https://doi.org/10.1029/2009JD011773
[23]  Kay, J. E., L’Ecuyer, T., Gettelman, A., Stephens, G., & O’Dell, C. (2008). The Contribution of Cloud and Radiation Anomalies to the 2007 Arctic Sea Ice Extent Minimum. Geophysical Research Letters, 35, L08503.
https://doi.org/10.1029/2008GL033451
[24]  Ma, H., Xie, S., Klein, S. A., Williams, K. D., Boyle, J. S., Bony, S., Williamson, D. et al. (2014). On the Correspondence between Mean Forecast Errors and Climate Errors in CMIP5 Models. Journal of Climate, 27, 1781-1798.
https://doi.org/10.1175/JCLI-D-13-00474.1
[25]  Manabe, S., & Stouffer, R. J. (1980). Sensitivity of a Global Climate Model to an Increase of CO2 Concentration in the Atmosphere. Journal of Geophysical Research: Oceans, 85, 5529-5554.
https://doi.org/10.1029/JC085iC10p05529
[26]  Mesinger, F., DiMego, G., Kalnay, E., Mitchell, K., Shafran, P. C., Ebisuzaki, W., Jovic, D., Woolle, J., Rogers, E., Berbery, E. H., & Ek, M. B. (2006). North American Regional Reanalysis. Bulletin of the American Meteorological Society, 87, 343-360.
https://doi.org/10.1175/BAMS-87-3-343
[27]  Ogi, M., & Rigor, I. G. (2013). Trends in Arctic Sea Ice and the Role of Atmospheric Circulation. Atmospheric Science Letters, 14, 97-101.
https://doi.org/10.1002/asl2.423
[28]  Overland, J. E., & Wang, M. (2013). When Will the Summer Arctic Be Nearly Sea Ice Free? Geophysical Research Letters, 40, 2097-2101.
https://doi.org/10.1002/grl.50316
[29]  Overland, J. E., Wang, M., Walsh, J. E., & Stroeve, J. C. (2014). Future Arctic Climate Changes: Adaptation and Mitigation Time Scales. Earth’s Future, 2, 68-74.
https://doi.org/10.1002/2013EF000162
[30]  Parkinson, C. L. (2000a). Recent Trend Reversals in Arctic Sea Ice Extents: Possible Connections to the North Atlantic Oscillation. Polar Geography, 24, 1-12.
https://doi.org/10.1080/10889370009377684
[31]  Parkinson, C. L. (2000b). Variability of Arctic Sea Ice: The View from Space, an 18-Year Record. Arctic, 53, 341-358.
https://doi.org/10.14430/arctic866
[32]  Parkinson, C. L., & Cavalieri, D. J. (2002). A 21 Year Record of Arctic Sea-Ice Extents and Their Regional, Seasonal and Monthly Variability and Trends. Annals of Glaciology, 34, 441-446.
https://doi.org/10.3189/172756402781817725
[33]  Schweiger, A. J. (2004). Changes in Seasonal Cloud Cover over the Arctic Seas from Satellite and Surface Observations. Geophysical Research Letters, 31, L12207.
https://doi.org/10.1029/2004GL020067
[34]  Schweiger, A., Lindsay, R., Zhang, J., Steele, M., Stern, H., & Kwok, R. (2011). Uncertainty in Modeled Arctic Sea Ice Volume. Journal of Geophysical Research: Oceans, 116, C00D06.
https://doi.org/10.1029/2011JC007084
[35]  Screen, J. A., Simmonds, I., & Keay, K. (2011). Dramatic Interannual Changes of Perennial Arctic Sea Ice Linked to Abnormal Summer Storm Activity. Journal of Geophysical Research, 116, D15105.
https://doi.org/10.1029/2011JD015847
[36]  Serreze, M. C., & Barry, R. G. (2011). Processes and Impacts of Arctic Amplification: A Research Synthesis. Global and Planetary Change, 77, 85-96.
https://doi.org/10.1016/j.gloplacha.2011.03.004
[37]  Serreze, M. C., & Francis, J. A. (2006). The Arctic Amplification Debate. Climatic Change, 76, 241-264.
https://doi.org/10.1007/s10584-005-9017-y
[38]  Serreze, M. C., Holland, M. M., & Stroeve, J. (2007). Perspectives on the Arctic’s Shrinking Sea-Ice Cover. Science, 315, 1533-1536.
https://doi.org/10.1126/science.1139426
[39]  Stephens, G. L., & Greenwald, T. J. (1991). The Earth’s Radiation Budget and Its Relation to Atmospheric Hydrology: 1. Observations of the Clear Sky Greenhouse Effect. Journal of Geophysical Research, 96, 15311.
[40]  Walsh, J. E. (2014). Intensified Warming of the Arctic: Causes and Impacts on Middle Latitudes. Global and Planetary Change, 117, 52-63.
https://doi.org/10.1016/j.gloplacha.2014.03.003
[41]  Walsh, J. E., Overland, J. E., Groisman, P. Y., & Rudolf, B. (2011). Ongoing Climate Change in the Arctic. AMBIO, 40, 6-16.
https://doi.org/10.1007/s13280-011-0211-z
[42]  Wang, X., & Key, J. R. (2003). Recent Trends in Arctic Surface, Cloud, and Radiation Properties from Space. Science, 299, 1725-1728.
https://doi.org/10.1126/science.1078065
[43]  Wild, M., Grieser, J., & Schär, C. (2008). Combined Surface Solar Brightening and Increasing Greenhouse Effect Support Recent Intensification of the Global Land-Based Hydrological Cycle. Geophysical Research Letters, 35, L17706.
https://doi.org/10.1029/2008GL034842
[44]  Ye, H., Fetzer, E. J., Wong, S., Behrangi, A., Olsen, E. T., Cohen, J., Chen, L. et al. (2014). Impact of Increased Water Vapor on Precipitation Efficiency over Northern Eurasia. Geophysical Research Letters, 41, 2941-2947.
https://doi.org/10.1002/2014GL059830

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133