全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Comparison of the Roles of Lymphatic Vessels and Blood Vessels in the Recurrence of Pterygia: A Retrospective Study

DOI: 10.4236/ojoph.2020.102016, PP. 142-153

Keywords: Relationship, Hemangiogenesis, Lymphangiogenesis, Pterygia, Recurrence

Full-Text   Cite this paper   Add to My Lib

Abstract:

Purpose: Increased conjunctival arteries and lymphangions accelerate the cellular immune response in recurrent pterygium, however, which plays a more important role warrants further investigation. The aim of the study is to compare the roles of lymphatic and blood vessels in pterygium recurrence. Methods: Histological sections from 48 excised recurrent pterygia (including 14 Grade 1, 20 Grade 2, and 14 Grade 3 tissues) were examined. Histological sections from seven nasal epibulbar conjunctival segments served as normal controls. Blood and lymphatic vessels were evaluated and compared according to blood microvessel density (BMD), blood vascular area (BVA), lymphatic microvessel density (LMD), and lymph-vascular area (LVA). Furthermore, the following relationships were analyzed: LMD and pterygium recurrence time (RT), LVA and RT, BMD and RT, BVA and RT. Results: Compared to LVA, LMD, BVA, and BVD values in normal control tissues, these values were markedly enhanced in recurrent pterygia tissues. The LMD/BMD and LVA/BVA ratios were significant increased in Grade 2 and 3 recurrent pterygia, suggesting that development of conjunctival lymphangions was not proportional to blood vessel growth. LMD, LVA and BVA were significantly correlated with RT for all grades of pterygia, while BMD was the only factor correlated with RT in Grade 1 pterygia. Moreover, no significant correlation was found between BMD and RT in Grade 2 and 3 pterygia. Conclusion: Compared to blood vessels, lymphangions might have a greater impact on pterygium recurrence.

References

[1]  Mak, R.K., Chan, T.C., Marcet, M.M., Choy, B.N., et al. (2017) Use of Anti-Vascular Endothelial Growth Factor in the Management of Pterygium. Acta Ophthalmologica, 95, 20-27. https://doi.org/10.1111/aos.13178
[2]  Yalcin Tok, O., Burcu Nurozler, A., Ergun, G., Akbas Kocaoglu, F. and Duman, S. (2008) Topical Cyclosporine a in the Prevention of Pterygium Recurrence. Ophthalmologica, 222, 391-396. https://doi.org/10.1159/000151740
[3]  Ibáñez, M., Eugarrios, M.F. and Calderón, D.I. (2009) Topical Cyclosporin A and Mitomycin C Injection as Adjunctive Therapy for Prevention of Primary Pterygium Recurrence. Ophthalmic Surgery, Lasers & Imaging, 40, 239-244.
https://doi.org/10.3928/15428877-20090430-03
[4]  Awdeh, R.M., DeStafeno, J.J., Blackmon, D.M., Cummings, T.J. and Kim, T. (2008) The Presence of T-Lymphocyte Subpopulations (CD4 and CD8) in Pterygia: Evaluation of the Inflammatory Response. Advances in Therapy, 25, 479-487.
https://doi.org/10.1007/s12325-008-0056-4
[5]  Tekelioglu, Y., Turk, A., Avunduk, A.M. and Yulug, E. (2006) Flow Cytometrical Analysis of Adhesion Molecules, T-Lymphocyte Subpopulations and Inflammatory Markers in Pterygium. Ophthalmologica, 220, 372-378.
https://doi.org/10.1159/000095863
[6]  Rohrbach, I.M., Starc, S. and Knorr, M. (1995) Predicting Recurrent Pterygium Based on Morphologic and Immunohistologic Parameters. Ophthalmologe, 92, 463-468.
[7]  Zhao, W., Wang, T., Deng, J., Zhong, L., Huang, W. and Ling, S. (2016) Conjunctival Lymphangiogenesis Was Associated with the Degree of Aggression in Substantial Recurrent Pterygia. Journal of Ophthalmology, 2016, Article ID: 1592514.
https://doi.org/10.1155/2016/1592514
[8]  Ling, S., Li, Q., Lin, H., Li, W., Wang, T., Ye, H., Yang, J., Jia, X. and Sun, Y. (2012) Comparative Evaluation of Lymphatic Vessels in Primary versus Recurrent Pterygium. Eye (London), 26, 1451-1458. https://doi.org/10.1038/eye.2012.194
[9]  Zhong, W., Montana, M., Santosa, S.M., Isjwara, I.D., Huang, Y.H., et al. (2018) Angiogenesis and Lymphangiogenesis in Corneal Transplantation—A Review. Survey of Ophthalmology, 63, 453-479. https://doi.org/10.1016/j.survophthal.2017.12.008
[10]  Cursiefen, C., Chen, L., Dana, M.R. and Streilein, J.W. (2003) Corneal Lymphangiogenesis: Evidence, Mechanisms, and Implications for Corneal Transplant Immunology. Cornea, 22, 273-281. https://doi.org/10.1097/00003226-200304000-00021
[11]  Regenfuss, B., Bock, F. and Cursiefen, C. (2012) Corneal Angiogenesis and Lymphangiogenesis. Current Opinion in Allergy and Clinical Immunology, 12, 548-554.
https://doi.org/10.1097/ACI.0b013e328357b4a2
[12]  Zhu, Y., Li, L., Reinach, P.S., Li, Y., Ge, C., Qu, J. and Chen, W. (2018) Corneal Collagen Cross-Linking with Riboflavin and UVA Regulates Hemangiogenesis and Lymphangiogenesis in Rats. Investigative Ophthalmology & Visual Science, 59, 3702-3712. https://doi.org/10.1167/iovs.17-23036
[13]  Hayashi, T., Usui, T. and Yamagami, S. (2016) Suppression of Allograft Rejection with Soluble VEGF Receptor 2 Chimeric Protein in a Mouse Model of Corneal Transplantation. The Tohoku Journal of Experimental Medicine, 239, 81-88.
https://doi.org/10.1620/tjem.239.81
[14]  Ferrari, G., Bignami, F. and Rama, P. (2015) Tumor Necrosis Factor-Alpha Inhibitors as a Treatment of Corneal Hemangiogenesis and Lymphangiogenesis. Eye Contact Lens, 41, 72-76. https://doi.org/10.1097/ICL.0000000000000071
[15]  Mitrofanova, I., Zavyalova, M., Riabov, V., Cherdyntseva, N. and Kzhyshkowska, J. (2018) The Effect of Neoadjuvant Chemotherapy on the Correlation of Tumor-Associated Macrophages with CD31 and LYVE-1. Immunobiology, 223, 449-459.
https://doi.org/10.1016/j.imbio.2017.10.050
[16]  Bock, F., Onderka, J., Braun, G., Schneider, A.C., Hos, D., Bi, Y., Bachmann, B.O. and Cursiefen, C. (2016) Identification of Novel Endogenous Anti(Lymph)angiogenic Factors in the Aqueous Humor. Investigative Ophthalmology & Visual Science, 57, 6554-6560.
https://doi.org/10.1167/iovs.15-18526
[17]  Cimpean, A.M., Poenaru Sava, M., Raica, M. and Ribatti, D. (2011) Preliminary Evidence of the Presence of Lymphatic Vessels Immunoreactive for D2-40 and Prox-1 in Human Pterygium. Oncology Reports, 26, 1111-1113.
[18]  Cursiefen, C., Maruyama, K., Jackson, D.G., Streilein, J.W. and Kruse, F.E. (2006) Time Course of Angiogenesis and Lymphangiogenesis after Brief Corneal Inflammation. Cornea, 25, 443-447. https://doi.org/10.1097/01.ico.0000183485.85636.ff
[19]  Park, P.J., Chang, M., Garg, N., Zhu, J., Chang, J.H. and Shukla, D. (2015) Corneal Lymphangiogenesis in Herpetic Stromal Keratitis. Survey of Ophthalmology, 60, 60-71.
https://doi.org/10.1016/j.survophthal.2014.06.001
[20]  Zheng, Y., Lin, H. and Ling, S. (2011) Clinicopathological Correlation Analysis of (Lymph) Angiogenesis and Corneal Graft Rejection. Molecular Vision, 17, 1694-1700.
[21]  Ling, S.Q., Liu, C., Li, W.H., Xu, J.G. and Kuang, W.H. (2010) Corneal Lymphangiogenesis Correlates Closely with Hemangiogenesis after Keratoplasty. International Journal of Ophthalmology, 3, 76-79.
[22]  Ling, S., Lin, H., Xiang, D., Feng, G. and Zhang, X. (2008) Clinical and Experimental Research of Corneal Lymphangiogenesis after Keratoplasty. Ophthalmologica, 222, 308-316.
https://doi.org/10.1159/000144030
[23]  Chang, J.H., Putra, I., Huang, Y.H., Chang, M., Han, K., Zhong, W., Gao, X., Wang, S., Dugas-Ford, J., Nguyen, T., Hong, Y.K. and Azar, D.T. (2016) Limited versus Total Epithelial Debridement Ocular Surface Injury: Live Fluorescence Imaging of Hemangiogenesis and Lymphangiogenesis in Prox1-GFP/Flk1:Myr-mCherry Mice. Biochimica et Biophysica Acta, 1860, 2148-2156. https://doi.org/10.1016/j.bbagen.2016.05.027
[24]  Giacomini, C., Ferrari, G., Bignami, F. and Rama, P. (2014) Alkali Burn versus Suture-Induced Corneal Neovascularization in C57BL/6 Mice: An Overview of Two Common Animal Models of Corneal Neovascularization. Experimental Eye Research, 121, 1-4.
https://doi.org/10.1016/j.exer.2014.02.005
[25]  Liu, L., Ling, S.Q., Li, Q.L., Wang, T., Ye, H., Yang, J.Z. and Jia, X.H. (2012) Relations between Lymphangiogenesis and the Size of Pterygium. International Journal of Ophthalmology, 5, 312-316.
[26]  Goyal, S., Chauhan, S.K., El Annan, J., Nallasamy, N., Zhang, Q. and Dana, R. (2010) Evidence of Corneal Lymphangiogenesis in Dry Eye Disease: A Potential Link to Adaptive Immunity? Archives of Ophthalmology, 128, 819-824.
https://doi.org/10.1001/archophthalmol.2010.124
[27]  Goyal, S., Chauhan, S.K. and Dana, R. (2012) Blockade of Prolymphangiogenic Vascular Endothelial Growth Factor C in Dry Eye Disease. Archives of Ophthalmology, 130, 84-89. https://doi.org/10.1001/archophthalmol.2011.266
[28]  Ling, S., Qi, C., Li, W., Xu, J. and Kuang, W. (2009) Crucial Role of Corneal Lymphangiogenesis for Allograft Rejection in Alkali-Burned Cornea Bed. Clinical and Experimental Ophthalmology, 37, 874-883.
https://doi.org/10.1111/j.1442-9071.2009.02178.x
[29]  Qi, C.X., Zhang, X.D., Yuan, J., Yang, J.Z., Sun, Y., Wang, T., Ye, H. and Ling, S.Q. (2012) Relationship between Angiogenesis and Lymphangiogenesis in Recurrent Pterygium. International Journal of Ophthalmology, 5, 655-660.
[30]  Lin, H., Luo, L., Ling, S., Chen, W., Liu, Z., Zhong, X., Wu, C., Chen, W. and Liu, Y. (2013) Lymphatic Microvessel Density as a Predictive Marker for the Recurrence Time of Pterygium: A Three-Year Follow-Up Study. Molecular Vision, 19, 166-173.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133