Global climate change, temperature rise and some kinds of extreme meteorological disaster, such as the drought, threaten the development of the natural ecosystem and human society. Forecasting in drought is an important step toward developing a disaster mitigation system. In this study, we utilized the statistical, autoregressive integrated moving average (ARIMA) model to predict drought conditions based on the standardized precipitation index (SPI) and standardized precipitation evapotranspiration index (SPEI) in a major tributary in the lower reaches of Nu River. We employed data from 2001 to 2010 to fit the model and data from 2011 to 2013 for model validation. The results showed that the coefficients of determination (R2) was over 0.85 in each index series, and the root-mean-square error and mean absolute error were low, implying that the ARIMA model is effective and adequate for this region.
References
[1]
Akaike, H. (1974). A New Look at the Statistical Model Identification. IEEE Transactions on Automatic Control, 19, 716-723. https://doi.org/10.1109/TAC.1974.1100705
[2]
Alam, N. M., Mishra, P. K., Jana, C., & Adhikary, P. P. (2014). Stochastic Model for Drought Forecasting for Bundelkhand Region in Central India. Indian Journal of Agricultural Sciences, 84, 79-84.
[3]
Becker, A., & Bugmann, H. (2001). Global Change and Mountain Regions: The Mountain Research Initiative. IGBP Report, IGBP Secretariat, No. 49. Stockholm, Sweden.
[4]
Box, G. E. P., Jenkins, G. M., Reinsel, G. C., & Ljung, G. M. (2015). Time Series Analysis: Forecasting and Control (pp. 712). Hoboken, NJ: John Wiley & Sons, Inc.
[5]
Chen, W. H., Xu, J., & Li, S. C. (2019). A Study on the Characteristics of Hydrological and Meteorological Droughts in the Lower Nu River. Acta Scientiarum Naturalium Universitatis Pekinensis, 55, 764-772. (In Chinese)
[6]
Dai, A. G. (2010). Drought under Global Warming: A Review. Climate Change, 2, 45-65.
https://doi.org/10.1002/wcc.81
[7]
Dai, A. G. (2013). Increasing Drought under Global Warming in Observations and Models. Nature Climate Change, 3, 52-58. https://doi.org/10.1038/nclimate1633
[8]
ECERLC (2014). Encyclopedia of Rivers and Lakes in China: Section of River Basins in Southwest Region. Beijing: China Water Power Press.
[9]
Fan, H., & He, D. M. (2012). Regional Climate and Its Change in the Nujiang River Basin. Acta Geographica Sinica, 67, 621-630. (In Chinese)
[10]
Giang, P. Q., Toshiki, K., Kunikane, S., & Sakata, M. (2013). Climate Change Challenges Transboundary Water Resources Management: Drawing from the Case of Vietnam. Kuala Lumpur.
[11]
Hao, Z., Singh, V. P., & Xia, Y. (2018). Seasonal Drought Prediction: Advances, Challenges, and Future Prospects. Reviews of Geophysics, 56, 108-141.
https://doi.org/10.1002/2016RG000549
[12]
He, D. M., Wu, R. D., Feng, Y., Li, Y. G., Ding, C. Z., Wang, W. L., & Yu, D. W. (2014). China’s Transboundary Waters: New Paradigms for Water and Ecological Security through Applied Ecology. Journal of Applied Ecology, 51, 1159-1168.
https://doi.org/10.1111/1365-2664.12298
[13]
He, J., Zhang, M., Wang, P., Wang, S., & Wang, X. (2011). Climate Characteristics of the Extreme Drought Events in Southwest China during Recent 50 Years. Acta Geographica Sinica, 66, 1179-1190. (In Chinese)
[14]
Jiang, G. (2006). Baoshan Yearbook. Kunming: Yunnan Ethnic Publishing House. (In Chinese)
[15]
Li, B., & Zhou, G. (2014). Advance in the Study on Drought Index. Acta Ecologica Sinica, 34, 1043-1052. (In Chinese) https://doi.org/10.3724/SP.J.1041.2014.01043
[16]
Li, M., & Liu, S. (2004). Chronicles of Lincang District. Beijing: Beijing Yanshan Press. (In Chinese)
[17]
Li, P., Feng, Y., & Zhao, X. (2015). Spatiotemporal Variability in Water Cycle of Cropland in the North Part of Northern China Plain from 2002 to 2011. Acta Scientiarum Naturalium Universitatis Pekinensis, 51, 1111-1118. (In Chinese)
[18]
Liu, X. Y., & He, D. M. (2013). Temporal and Spatial Distribution and Its Change Trend of Suspended Sediment Transport in the Nujiang River Basin. Acta Geographica Sinica, 68, 365-371. (In Chinese)
[19]
Metzger, M. J., Bunce, R. G. H., Jongman, R. H. G., Sayre, R., Trabucco, A., & Zomer, R. (2012). A High-Resolution Bioclimate Map of the World: A Unifying Framework for Global Biodiversity Research and Monitoring. Global Ecology and Biogeography, 22, 630-638. https://doi.org/10.1111/geb.12022
[20]
Patel, N. R., Choprab, P., & Dadhwal, V. K. (2007). Analyzing Spatial Patterns of Meteorological Drought Using Standardized Precipitation Index. Meteorological Applications, 14, 329-336. https://doi.org/10.1002/met.33
[21]
Schwarz, G. (1978). Estimating the Dimension of a Model. The Annals of Statistics, 6, 461-464. https://doi.org/10.1214/aos/1176344136
[22]
Sharma, T. C., & Panu, U. S. (2014). Modeling of Hydrological Drought Durations and Magnitudes: Experiences on Canadian Streamflows. Journal of Hydrology Regional Studies, 1, 92-106. https://doi.org/10.1016/j.ejrh.2014.06.006
[23]
Shi, B., Zhu, X., Hu, Y., & Yang, Y. (2015). Spatial and Temporal Variations of Drought in Henan Province over a 53-Year Period Based on Standardized Precipitation Evapotranspiration Index. Geographical Research, 34, 1547-1558. (In Chinese)
[24]
Soumyashri, R., & Nagraj, S. P. (2016). Drought Analysis Based on Streamflow Drought Index (SDI) in Bhima Sub-Basin. International Journal of Advanced Engineering Research and Applications, 2, 154-159.
[25]
Tigkas, D., Vangelis, H., & Tsakiris, G. (2012). Drought and Climatic Change Impact on Streamflow in Small Watersheds. Science of the Total Environment, 440, 33-41.
https://doi.org/10.1016/j.scitotenv.2012.08.035
[26]
Tsakiris, G., Nalbantis, I., Vangelis, H., Verbeiren, B., Huysmans, M., Tychon, B., Jacquemin, I., Canters, F., Vanderhaegen, S., Engelen, G., Poelmans, L., De Becker, P., & Batelaan, O. (2013). A System-based Paradigm of Drought Analysis for Operational Management. Water Resources Management, 27, 5281-5297.
https://doi.org/10.1007/s11269-013-0471-4
[27]
Vicente-Serrano, S. M., Beguería, S., & López-Moreno, J. I. (2010). A Multiscalar Drought Index Sensitive to Global Warming: The Standardized Precipitation Evapotranspiration Index. Journal of Climate, 23, 1696-1718.
https://doi.org/10.1175/2009JCLI2909.1
[28]
Vicente-Serrano, S. M., Gouveia, C., Camarero, J. J., Beguería, S., Trigo, R., López-Moreno, J. I., Azorín-Molina, C., Pasho, E., Lorenzo-Lacruz, J., Revuelto, J., Morán-Tejeda, E., & Sanchez-Lorenzo, A. (2012). Response of Vegetation to Drought Time-Scales across Global Land Biomes. Proceedings of the National Academy of Sciences, 110, 52-57. https://doi.org/10.1073/pnas.1207068110
[29]
WMO (2012). Standardized Precipitation Index User Guide. World Meteorological Organization.
[30]
Xu, J. (2017). A Study of Meto-Drought in Nujiang and Lancang River Basins in Yunnan Province during Recent 50 Years. Acta Scientiarum Naturalium Universitatis Pekinensis, 53, 964-972. (In Chinese)
[31]
Yeh, H. F., & Hsu, H. (2019). Stochastic Model for Drought Forecasting in the Southern Taiwan Basin. Water, 11, 2041. https://doi.org/10.3390/w11102041