Following the worldwide trend of developing heavy metal free materials, dental implants aren’t out of this tendency. Over the years, a number of techniques to condition the surface of dental implants have been designed and used such as oxide blasting, however the scientific medical community has been concerned about the use of these heavy metals which leads us to investigate and develop new conditioning techniques. The aim of the study was the analysis of the Systhex® implant surface in automatic system for the treatment of the surface with acid, where we can identify the surfaces purity level, pore size, deepness and especially the roughness proportionated by the technology of acid conditioning on the titanium surfaces of degree IV dental implants. We conclude that the automatic conditioning of acid attack promoted cleanliness, homogeneity and ideal roughness for the osseointegration process.
References
[1]
Yurttutan, M.E. and Keskin, A. (2018) Evaluation of the Effects of Different Sand Particles That Used in Dental Implant Roughened for Osseointegration. BMC Oral Health, 18, 47. https://doi.org/10.1186/s12903-018-0509-3
[2]
Wennerberg, A. and Albrektsson, T. (2009) Effects of Titanium Surface Topography on Bone Integration: A Systematic Review. Clinical Oral Implants Research, 20, 172-184. https://doi.org/10.1111/j.1600-0501.2009.01775.x
[3]
El Chaar, E., Zhang, L., Zhou, Y., et al. (2019) Osseointegration of Superhydrophilic Implants Placed in Defect Grafted Bones. The International Journal of Oral & Maxillofacial Implants, 34, 443-450. https://doi.org/10.11607/jomi.7172
[4]
Jensen, O.T. (2015) Dental Extraction, Immediate Placement of Dental Implants, and Immediate Function. Oral and Maxillofacial Surgery Clinics of North America, 27, 273-282. https://doi.org/10.1016/j.coms.2015.01.008
[5]
Mehta, H. and Shah, S. (2015) Management of Buccal Gap and Resorption of Buccal Plate in Immediate Implant Placement: A Clinical Case Report. Journal of International Oral Health, 7, 72-77.
[6]
Ferreira Mattos, C., Alencar De Carvalho, M.A., De Carval-ho, J.J., Pinto Dos Santos, P.G., Da Silva Pires, J.L. and Da Silva Brum, I. (2020) Use of Extra-Narrow-Diameter Implants in Reduced Alveolar Ridge: A Case Report. Journal of Biomaterials and Nanobiotechnology, 11, 101-109.
https://doi.org/10.4236/jbnb.2020.112007
[7]
Gasik, M. (2017) Understanding Biomaterial-Tissue Interface Quality: Combined in Vitro Evaluation. Science and Technology of Advanced Materials, 18, 550-562.
https://doi.org/10.1080/14686996.2017.1348872
[8]
Hu, X.N. (2014) Conformation Change of Bovine Serum Albumin Induced by Bioactive Titanium Metals and Its Effects on Cell Behaviors. Journal of Biomedical Materials Research Part A, 102, 1053-1062. https://doi.org/10.1002/jbm.a.34768
[9]
Akbarian, S., Sojoodi, J., Monnavari, F., Heidari, H., Khosravian, P., Javar, H.A., Assadi, A., Rasouli, R., Saffari, M. and As Shandiz, S. (2017) Nano Conjugated PLGA-Chlorambucil: Synthesis in Vitro Anti Non-Hodgkin’s Lymphoma Cellular Assay. Letters in Drug Design & Discovery, 14, 827-836.
https://doi.org/10.2174/1570180814666161130113446
[10]
Henningsen, A., Smeets, R., Hartjen, P., Heinrich, O., Heuberger, R., Heiland, M., et al. (2017) Photofunctionalization and Non-Thermal Plasma Activation of Titanium Surfaces. Clinical Oral Investigations, 22, 1045-1054.
https://doi.org/10.1007/s00784-017-2186-z
[11]
Osborn, J.F., Willich, P. and Meenen, N. (1990) The Release of Titanium into Human Bone from a Titanium Implant Coated with Plasma-Sprayed Titanium. In: Heimke, G., Soltesz, V. and Lee, A.J.C., Eds., Clinical Implant Materials: Advances in Biomaterials, Vol. 1, Elsevier, Amsterdam, 75-80.
[12]
Das, S., Dholam, K., Gurav, S., Bendale, K., Ingle, A., Mohanty, B., et al. (2019) Accentuated Osseointegration in Osteogenicnanofbrous Coated Titanium Implants. Scientific Reports, 9, Article No. 17638. https://doi.org/10.1038/s41598-019-53884-x
[13]
Chávarri-Prado, D., Brizuela-Velasco, A., Diéguez-Pereira, M., Pérez-Pevida, E., Jiménez-Garrudo, A., Viteri-Agustín, I., Estrada-Martínez, A. and Montalbán-Vadillo, O. (2020) Influence of Cortical Bone and Implant Design in the Primary Stability of Dental Implants Measured by Two Different Devices of Resonance Frequency Analysis: An in Vitro Study. Journal of Clinical and Experimental Dentistry, 12, e242-e248. https://doi.org/10.4317/jced.56014
[14]
Sugiura, T., Yamamoto, K., Horita, S., Murakami, K., Tsutsumi, S. and Kirita, T. (2016) The Effects of Bone Density and Crestal Cortical Bone Thickness on Micromotion and Peri-Implant Bone Strain Distribution in an Immediately Loaded Implant: A Nonlinear Finite Element Analysis. Journal of Periodontal & Implant Science, 46, 152-165. https://doi.org/10.5051/jpis.2016.46.3.152
[15]
da Silva Brum, I., José deCarvalho, J., daSilvaPires, J.L., deCarvalho, M.A.A., dosSantos, L.B.F. and Elias, C.N. (2019) Nanosized Hydroxyapatite and β-Tricalcium Phosphate Composite: Physico-Chemical, Cytotoxicity, Morphological Properties and in Vivo Trial. Scientific Reports, 9, Article ID: 19602.
https://doi.org/10.1038/s41598-019-56124-4
[16]
MacDonald, D.E., Markovic, B., Allen, M., Somasundaran, P. and Boskey, A.L. (1998) Surface Analysis of Human Plasma Fibronectin Adsorbed to Commercially Pure Titanium Materials. Journal of Biomedical Materials Research, 41, 120-130.
https://doi.org/10.1002/(SICI)1097-4636(199807)41:1<120::AID-JBM15>3.0.CO;2-R
[17]
Rasouli, R., Barhoum, A. and Uludag, H. (2018) A Review of Nanostructured Surfaces and Materials for Dental Implants: Surface Coating, Patterning and Functionalization for Improved Performance. Biomaterials Science, 6, 1312-1338.
https://doi.org/10.1039/C8BM00021B
[18]
Tabibi, S., Kegel, A., Lai, W.K., Bruce, I.C. and Dillier, N. (2019) Measuring Temporal Response Properties of Auditory Nerve Fibers in Cochlear Implant Recipients. Hearing Research, 380, 187-196. https://doi.org/10.1016/j.heares.2019.07.004
[19]
Boyan, B., Dean, D.D., Lohmann, C.H., Cochran, D.L., Sylvia, V.L. and Schwartz, D.K. (2001) The Titanium-Bone Cell Interface in Vitro: The Role of the Surface in Promoting Osteointegration. In: Brunette, D.M., Tengvall, P., Textor, M. and Thomsen, P., Eds., Titanium in Medicine: Material Science Surface Science Engineering Biological Responses and Medical Applications, Springer, Berlin, 561-585.
[20]
Anselme, K., Bigerelle, M., Noel, B., et al. (2000) Qualitative and Quantitative Study of Human Osteoblast Adhesion on Materials with Various Surface Roughnesses. Journal of Biomedical Materials Research, 49, 155-166.
https://doi.org/10.1002/(SICI)1097-4636(200002)49:2<155::AID-JBM2>3.0.CO;2-J
[21]
Brunette, D.M. (2001) Principles of All Behavior on Titanium Surfaces and Their Application to Implanted Devices. In: Brunette, D.M., Tengvall, P., Textor, M. and Thomsen, P., Eds., Titanium in Medicine, Springer, Berlin, 485-512.
https://doi.org/10.1007/978-3-642-56486-4_15
[22]
Lang, N.P., Salvi, G.E., Huynh-Ba, G., Ivanovki, S., Donos, N. and Bosshardt, D.D. (2011) Early Osseointegration to Hydrophilic and Hydrophobic Implant Surfaces in Humans. Clinical Oral Implants Research, 22, 349-356.
https://doi.org/10.1111/j.1600-0501.2011.02172.x
[23]
Minamikawa, H., Att, W., Ikeda, T., Makoto, H. and Ogawa, T. (2016) Long-Term Progressive Degradation of the Biological Capability of Titanium. Materials, 9, 102.
https://doi.org/10.3390/ma9020102
[24]
Nicolas-Silvente, A.I., Velasco-Ortega, E., Ortiz-Garcia, I., Monsalve-Guil, L., Gil, J. and Jimenez-Guerra, A. (2020) Influence of the Titanium Implant Surface Treatment on the Surface Roughness and Chemical Composition. Materials (Basel), 13, pii: E314. https://doi.org/10.3390/ma13020314
[25]
Saffarpour, A., Nozari, A., Fekrazad, R., Saffarpour, A., Heibati, M.N. and Iranparvar, K. (2018) Microstructural Evaluation of Contaminated Implant Surface Treated by Laser, Photodynamic Therapy, and Chlorhexidine 2 Percent. The International Journal of Oral & Maxillofacial Implants, 33, 1019-1026.
https://doi.org/10.11607/jomi.6325
[26]
Jeevanandam, J., Barhoum, A., Chan, Y.S., Dufresne, A. and Danquah, M.K. (2018) Review on Nanoparticles and Nanostructured Materials: History, Sources, Toxicity and Regulations. Beilstein Journal of Nanotechnology, 9, 1050-1074.
https://doi.org/10.3762/bjnano.9.98
[27]
Sudha, P.N., Sangeetha, K., Vijayalakshmi, K. and Barhoum, A. (2018) Nanomaterials History, Classification, Unique Properties, Production and Market. In: Makhlouf, A.S.H. and Barhoum, A., Eds., Emerging Applications of Nanoparticles and Architecture Nanostructures, Elsevier, Cambridge, 341-384.
https://doi.org/10.1016/B978-0-323-51254-1.00012-9
[28]
Petruzelka, J., Dluhos, L., Hrusák D. and Sochová, J. (2006) Nanostructured Titanium-Application in Dental Implants.
[29]
Webster, T.J., Siegel, R.W. and Bizios, R. (1999) Design and Evaluation of Nanophase Alumina for Orthopaedic/Dental Applications. Nanostructured Materials, 12, 983-986. https://doi.org/10.1016/S0965-9773(99)00283-4
[30]
Trento, G., Carvalho, P.H., Reis, E.N.R., Spin-Neto, R., Bassi, A.P.F. and Pereira-Filho, V.A. (2020) Bone Formation around Two Titanium Implant Surfaces Placed in Bone Defects with and without a Bone Substitute Material: A Histological, Histomorphometric, and Micro-Computed Tomography Evaluation. Clinical Implant Dentistry and Related Research, 22, 177-185.
https://doi.org/10.1111/cid.12880
[31]
Pinotti, F.E., Oliveira, G.J.P.L., Aroni, M.A.T., Marcantonio, R.A.C. and Marcantonio, E. (2018) Analysis of Osseointegration of Implants with Hydrophilic Surface in Grafted Areas: A Preclinical Study. Clinical Oral Implants Research, 29, 963-972.
https://doi.org/10.1111/clr.13361
[32]
Yamamoto, H., Shibata, Y. and Miyazaki, T. (2005) Anode Glow Discharge Plasma Treatment of Titanium Plates Facilitates Adsorption of Extracellular Matrix Proteins to the Plates. Journal of Dental Research, 84, 668-671.
https://doi.org/10.1177/154405910508400717
[33]
Hoornaert, A., Vidal, L., Besnier, R., Morlock, J.F., Louarn, G. and Layrolle, P. (2020) Biocompatibility and Osseointegration of Nanostructured Titanium Dental Implants in Minipigs. Clinical Oral Implants Research.
https://doi.org/10.1111/clr.13589
[34]
Browne, M. and Gregson, P.J.R. (1996) Characterization of Titanium Alloy Implant Surfaces with Improved Dissolution Resistance. Journal of Materials Science: Materials in Medicine, 7, 323-329. https://doi.org/10.1007/BF00154543