全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Assessment of Different WRF Configurations Performance for a Rain Event over Panama

DOI: 10.4236/acs.2020.103016, PP. 280-297

Keywords: Parameterization, Microphysics, WRF, Rain

Full-Text   Cite this paper   Add to My Lib

Abstract:

A set of 15 combinations of microphysics and cumulus parameterizations for the WRF numerical model were tested in the forecast of a rain event on January 16 2018 over Panama. GPM satellite, upper air soundings and ground weather stations were used to evaluate the performance of each configuration. Different metrics were used to obtain the configurations that produced the best forecasts. The analysis showed a strong fluctuation of the diurnal precipitation cycle from one region to another. From the set of tests carried, BMJ with Morrison performed slightly above the other combinations in representing well the diurnal cycle for some domain areas, followed by Thom-Gr, WSM6-BMJ and WSM6-KF. While the experiments had a better performance forecasting over sea, they were not able to match the highest values of total precipitation. Regarding spatial rain distribution, all BMJ cumulus combinations showed the best skills mainly over the area comprising the Panama Canal while the others tended to overestimate the rain. Finally, most BMJ experiments showed the highest correlation factor and performed quite well representing the vertical profiles of relative humidity, temperature and wind.

References

[1]  Hastenrath, S. (2002) The Intertropical Convergence Zone of the Eastern Pacific Revisited. International Journal of Climatology, 22, 347-356.
https://doi.org/10.1002/joc.739
[2]  Nakaegawa, T., Pinzon, R., Fabrega, J., Cuevas, J.A., De Lima, H.A., Cordoba, E., Nakayama, K., Batista Lao, J.I., Lau Melo, A. and Gonzalez, D.A. (2019) Seasonal Changes of the Diurnal Variation of Precipitation in the Upper Río Chagres Basin, Panamá. PLoS ONE, 14, e0224662.
https://doi.org/10.1371/journal.pone.0224662
[3]  Durán-Quesada, A.M., Reboita, M. and Gimeno, L. (2012) Precipitation in Tropical America and the Associated Sources of Moisture: A Short Review. Hydrological Sciences Journal, 57, 612-624.
https://doi.org/10.1080/02626667.2012.673723
[4]  Mapes, B.E., Warner, T.T., Xu, M. and Negri, A.J. (2003) Diurnal Patterns of Rainfall in Northwestern South America. Part I: Observations and Context. Monthly Weather Review, 131, 799-812.
https://doi.org/10.1175/1520-0493(2003)131<0799:DPORIN>2.0.CO;2
[5]  Warner, T.T., Mapes, B.E. and Xu, M. (2003) Diurnal Patterns of Rainfall in Northwestern South America. Part II: Model simulations. Monthly Weather Review, 131, 813-829.
https://doi.org/10.1175/1520-0493(2003)131<0813:DPORIN>2.0.CO;2
[6]  Moya-álvarez, A.S., Gálvez, J., Holguín, A., Estevan, R., Kumar, S., Villalobos, E., Martínez-Castro, D. and Silva, Y. (2018) Extreme Rainfall Forecast with the WRF-ARW Model in the Central Andes of Peru. Atmosphere, 9, 362.
https://doi.org/10.3390/atmos9090362
[7]  Patel, P., Ghosh, S., Kaginalkar, A., Islam, S. and Karmakar, S. (2019) Performance Evaluation of WRF for Extreme Flood Forecasts in a Coastal Urban Environment. Atmospheric Research, 223, 39-48.
https://doi.org/10.1016/j.atmosres.2019.03.005
[8]  Baklanov, A., Schlünzen, K., Suppan, P., Baldasano, J., Brunner, D., Aksoyoglu, S., Ca michael, G., Douros, J., Flemming, J. and Forkel, R. (2013) Online Coupled Regional Meteorology-Chemistry Models in Europe: Current Status and Prospects. Atmospheric Chemistry and Physics, Discussions, 13, 12541-12724.
https://doi.org/10.5194/acpd-13-12541-2013
[9]  Givati, A., Gochis, D., Rummler, T. and Kunstmann, H. (2016) Comparing One-Way and Two-Way Coupled Hydrometeorological Forecasting Systems for Flood Forecasting in the Mediterranean Region. Hydrology, 3, 19.
https://doi.org/10.3390/hydrology3020019
[10]  Simpson, C.C., Sharples, J.J., Evans, J.P. and McCabe, M.F. (2013) Large Eddy Simulation of Atypical Wildland Fire Spread on Leeward Slopes. International Journal of Wildland Fire, 22, 599-614.
https://doi.org/10.1071/WF12072
[11]  Bhomia, S., Kumar, P. and Kishtawal, C.M. (2019) Evaluation of the Weather Research and Forecasting Model Forecasts for Indian Summer Monsoon Rainfall of 2014 Using Ground Based Observations. Asia-Pacific Journal of Atmospheric Sciences, 55, 617-628.
https://doi.org/10.1007/s13143-019-00107-y
[12]  Sierra-Lorenzo, M., Ferrer-Hernández, A.L., Valdés-Hernández R., González-Mayor, Y., Cruz-Rodríguez, R.C., Borrajero-Montejo, I., Rodríguez-Genó, C.F., Quintana-Rodríguez, N. and Roque-Carrasco, A. (2015) Sistema Automático de Predicción a Mesoescala de Cuatro Ciclos Diarios.
[13]  Sierra-Lorenzo, M., Borrajero-Montejo, I., Ferrer-Hernández, A.L., Morfa-ávalos, Y., Morejón-Loyola, Y. and Hinojosa-Fernández, M. (2017) Estudios de Sensibilidad del SisPI a Cambios de la PBL, la Cantidad de Niveles Verticales y, las Parametrizaciones de Microfisica y Cúmulos, a muy Alta Resolución.
[14]  Mitrani-Arenal, I., Perez-Bello, A., Cabrales-Infante, J., Povea-Perez, Y., Hernandez-Gonzalez, M. and Diaz-Rodriguez, O.O. (2019) Coastal Flood Forecast in Cuba, Due to Hurricanes, Using a Combination of Numerical Models. Revista Cubana de Meteorología, 25, 121-138.
[15]  Hsiao, L.-F., Chen, D.-S., Kuo, Y.-H., Guo, Y.-R., Yeh, T.-C., Hong, J.S., Fong, C.-T. and Lee, C.-S. (2012) Application of WRF 3DVAR to Operational Typhoon Prediction in Taiwan: Impact of Outer Loop and Partial Cycling Approaches. Weather Forecast, 27, 1249-1263.
https://doi.org/10.1175/WAF-D-11-00131.1
[16]  Poleo, D., Vindas, C. and Stoltz, W. (2017) Comparación y Evaluación de Diferentes Esquemas de Parametrización de Cúmulos con WRF EMS Aplicadas al Caso del Huracán Otto. Tópicos Meteorológicos y Oceanográficos, 16, 28-40.
[17]  Maldonado-Mora, T.J. (2012) Regional Precipitation Study in Central America, Using the WRF Model. Examensarbete vid Institutionen för geovetenskaper, Uppsala.
[18]  Lin, Y.-L., Farley, R.D. and Orville, H.D. (1983) Bulk Parameterization of the Snow Field in a Cloud Model. Journal of Applied Meteorology and Climatology, 22, 1065-1092. https://doi.org/10.1175/1520-0450(1983)022<1065:BPOTSF>2.0.CO;2
[19]  Hong, S.-Y. (2006) The WRF Single-Moment 6-Class Microphysics Scheme (WSM6). Journal of the Korean Meteorological Society, 42, 129-151.
[20]  Thompson, G., Rasmussen, R.M. and Manning, K. (2004) Explicit Forecasts of Winter Precipitation Using an Improved Bulk Microphysics Scheme. Part I: Description and Sensitivity Analysis. Monthly Weather Review, 132, 519-542.
https://doi.org/10.1175/1520-0493(2004)132<0519:EFOWPU>2.0.CO;2
[21]  Thompson, G., Field, P.R., Rasmussen, R.M. and Hall, W.D. (2008) Explicit Forecasts of Winter Precipitation Using an Improved Bulk Microphysics Scheme. Part II: Implementation of a New Snow Parameterization. Monthly Weather Review, 136, 5095-5115.
https://doi.org/10.1175/2008MWR2387.1
[22]  Lim, K.-S.S. and Hong, S.-Y. (2010) Development of an Effective Double-Moment Cloud Microphysics Scheme with Prognostic Cloud Condensation Nuclei (CCN) for Weather and Climate Models. Monthly Weather Review, 138, 1587-1612.
https://doi.org/10.1175/2009MWR2968.1
[23]  Morrison, H., Thompson, G. and Tatarskii, V. (2009) Impact of Cloud Microphysics on the Development of Trailing Stratiform Precipitation in a Simulated Squall Line: Comparison of One- and Two-Moment Schemes. Monthly Weather Review, 137, 991-1007.
https://doi.org/10.1175/2008MWR2556.1
[24]  Janjić, Z.I. (1994) The Step-Mountain Eta Coordinate Model: Further Developments of the Convection, Viscous Sublayer, and Turbulence Closure Schemes. Monthly Weather Review, 122, 927-945.
https://doi.org/10.1175/1520-0493(1994)122<0927:TSMECM>2.0.CO;2
[25]  Grell, G.A. and Freitas, S.R. (2014) A Scale and Aerosol Aware Stochastic Convective Parameterization for Weather and Air Quality Modeling. Atmospheric Chemistry and Physics, 14, 5233-5250.
https://doi.org/10.5194/acp-14-5233-2014
[26]  Kain, J.S. (2004) The Kain-Fritsch Convective Parameterization: An Update. Journal of Applied Meteorology, 43, 170-181.
https://doi.org/10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2
[27]  Lim, J.-O.J., Hong, S. and Dudhia, J. (2004) The WRF Single-Moment-Microphysics Scheme and Its Evaluation of the Simulation of Mesoscale Convective Systems. 20th Conference on Weather Analysis and Forecasting/16th Conference on Numerical Weather Prediction, Seattle, 1-15 January 2004, 1-4.
[28]  Rutledge, S.A. and Hobbs, P.V. (1984) The Mesoscale and Microscale Structure and Organization of Clouds and Precipitation in Midlatitude Cyclones. XII: A Diagnostic Modeling Study of Precipitation Development in Narrow Cold-Frontal Rainbands. Journal of the Atmospheric Sciences, 41, 2949-2972.
https://doi.org/10.1175/1520-0469(1984)041<2949:TMAMSA>2.0.CO;2
[29]  Betts, A.K. (1986) A New Convective Adjustment Scheme. Part I: Observational and Theoretical Basis. Quarterly Journal of the Royal Meteorological Society, 112, 677-691.
https://doi.org/10.1002/qj.49711247307
[30]  Betts, A. and Miller, M. (1986) A New Convective Adjustment Scheme. Part II: Single Column Tests Using GATE Wave, BOMEX, ATEX and Arctic Air-Mass Data Sets. Quarterly Journal of the Royal Meteorological Society, 112, 693-709.
https://doi.org/10.1002/qj.49711247308
[31]  Arakawa, A., Jung, J.-H. and Wu, C.-M. (2011) Toward Unification of the Multiscale Modeling of the Atmosphere. Atmospheric Chemistry and Physics, Discussions, 11, 3731-3742.
https://doi.org/10.5194/acp-11-3731-2011
[32]  Iacono, M.J., Delamere, J.S., Mlawer, E.J., Shephard, M.W., Clough, S.A. and Collins, W.D. (2008) Radiative Forcing by Long-Lived Greenhouse Gases: Calculations with the AER Radiative Transfer Models. Journal of Geophysical Research: Atmospheres, 113, D13103.
https://doi.org/10.1029/2008JD009944
[33]  Ruiz-Arias, J.A., Dudhia, J., Santos-Alamillos, F.J. and Pozo-Vázquez, D. (2013) Surface Clear-Sky Shortwave Radiative Closure Intercomparisons in the Weather Research and Forecasting Model. Journal of Geophysical Research: Atmospheres, 118, 9901-9913.
https://doi.org/10.1002/jgrd.50778
[34]  Black, T.L. (1994) The New NMC Mesoscale Eta Model: Description and Forecast Examples. Weather Forecast, 9, 265-278.
https://doi.org/10.1175/1520-0434(1994)009<0265:TNNMEM>2.0.CO;2
[35]  Ek, M.B., Mitchell, K.E., Lin, Y., Rogers, E., Grunmann, P., Koren, V. and Tarpley, J.D. (2003) Implementation of Noah Land Surface Model Advances in the National Centers for Environmental Prediction Operational Mesoscale Eta Model. Journal of Geophysical Research: Atmospheres, 108, 1-16.
https://doi.org/10.1029/2002JD003296
[36]  Sukoriansky, S., Galperin, B. and Perov, V. (2005) Application of a New Spectral Theory of Stably Stratified Turbulence to the Atmospheric Boundary Layer over Sea Ice. Boundary-Layer Meteorology, 117, 231-257.
https://doi.org/10.1007/s10546-004-6848-4
[37]  Dee, D.P., Uppala, S.M., Simmons, A., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M., Balsamo, G. and Bauer, P. (2011) The ERA-Interim Reanalysis: Configuration and Performance of the Data Assimilation System. Quarterly Journal of the Royal Meteorological Society, 137, 553-597.
https://doi.org/10.1002/qj.828
[38]  Hou, A.Y., Kakar, R.K., Neeck, S., Azarbarzin, A.A., Kummerow, C.D., Kojima, M., Oki, R., Nakamura, K. and Iguchi, T. (2014) The Global Precipitation Measurement Mission. Bulletin of the American Meteorological Society, 95, 701-722.
https://doi.org/10.1175/BAMS-D-13-00164.1
[39]  Warner, T.T. (2010) Numerical Weather and Climate Prediction. Cambridge University Press, Cambridge.
https://doi.org/10.1017/CBO9780511763243
[40]  Dorninger, M., Friederichs, P., Wahl, S., Mittermaier, M.P., Marsigli, C. and Brown, B.G. (2018) Forecast Verification Methods Across Time and Space Scales—Part I. Meteorologische Zeitschrift, 27, 433-434.
https://doi.org/10.1127/metz/2018/0955
[41]  Gbode, I.E., Dudhia, J., Ogunjobi, K.O. and Ajayi, V.O. (2019) Sensitivity of Different Physics Schemes in the WRF Model during a West African Monsoon Regime. Theoretical and Applied Climatology, 136, 733-751.
https://doi.org/10.1007/s00704-018-2538-x
[42]  Gallai, I., Giaiotti, D.B., Gladich, I. and Stel, F. (2008) On the Onset and Evolution of Deep Moist Convection over Areas Characterized by Complex Orography: The Case of Friuli Venezia Giulia; Università di Trento. Dipartimento di ingegneria civile e ambientale.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133