全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

特殊浸润性仿生材料研究进展
Research Progress of Bio-Inspired Materials with Special Wettability

DOI: 10.12677/MS.2020.104027, PP. 216-233

Keywords: 特殊浸润性,仿生材料,亲疏水性,亲疏油性
Special Wettability
, Bio-Inspired Materials, Hydrophobicity/Philicity, Olephobicity/Philicity

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文系统阐述了特殊浸润性仿生材料的研究进展,从独特的生物实例到相应的理论认识,从概念验证到材料制备再到实际应用。然而表面浸润性不仅仅包含亲疏水和亲疏油,还应考虑固液气相间相互作用的环境,其中涉及到许多的表面参数。对于超浸润性材料的制备,合成低成本材料,开发大规模制备工艺,实现重要的多功能化,考虑实际的应用场景,材料的综合稳定性等因素都会影响最终的结果。
This paper systematically discussed the research progress of bio-inspired materials with special wettability, from unique biology to relevant theories, from basical concept to preparation process and practical application. However, the surface wettability includes not only hydrophobicity, hy-drophilicity, oleophobicity and oleophilicity, but also the interaction environment of 3 phase sol-id-liquid-gas, which involves many surface parameters. As for the preparation of materials with super-wettability, the factors such as the synthesis of low-cost materials, developing large-scale preparation procession, achieving the important multifunctional, considering the environment of practical application, the comprehensive stability of materials, can still impact the result finally.

References

[1]  Feng, L., Zhang, Y., Xi, J., et al. (2008) Petal Effect:? A Superhydrophobic State with High Adhesive Force. Langmuir, 24, 4114-4119.
https://doi.org/10.1021/la703821h
[2]  Feng, L., Li, S., Li, Y., et al. (2002) Super-Hydrophobic Surfaces: From Natural to Artificial. Advanced Materials, 14, 1857-1860.
https://doi.org/10.1002/adma.200290020
[3]  Liu, K., Zhang, M., Zhai, J., et al. (2008) Bioinspired Construction of Mg-Li Alloys Surfaces with Stable Superhydrophobicity and Improved Corrosion Resistance. Applied Physics Letters, 92, Article ID: 183103.
https://doi.org/10.1063/1.2917463
[4]  Liu, K., Du, J., Wu, J., et al. (2012) Super-hydrophobic Gecko Feet with High Adhesive Forces towards Water and Their Bio-Inspired Materials. Nanoscale, 4, 768-772.
https://doi.org/10.1039/C1NR11369K
[5]  Parker, A.R. and Lawrence, C.R. (2001) Water Capture by a Desert Beetle. Nature, 414, 33-34.
https://doi.org/10.1038/35102108
[6]  Zheng, Y., Gao, X. and Jiang, L. (2007) Directional Adhesion of Superhydrophobic Butterfly Wings. Soft Matter, 3, 178-182.
https://doi.org/10.1039/B612667G
[7]  Gao, X., Yan, X., Yao, X., et al. (2007) The Dry-Style Antifogging Properties of Mosquito Compound Eyes and Artificial Analogues Prepared by Soft Lithography. Advanced Materials, 19, 2213-2217.
https://doi.org/10.1002/adma.200601946
[8]  Feng, X.Q., Gao, X., Wu, Z., et al. (2007) Superior Water Repellency of Water Strider Legs with Hierarchical Structures:? Experiments and Analysis. Langmuir, 23, 4892-4896.
https://doi.org/10.1021/la063039b
[9]  Dai, X., Sun, N., Nielsen, S.O., et al. (2018) Hydrophilic Di-rectional Slippery Rough Surfaces for Water Harvesting. Science Advances, 4, eaaq0919.
https://doi.org/10.1126/sciadv.aaq0919
[10]  Wang, S., Liu, K., Yao, X., et al. (2015) Bioinspired Surfaces with Superwettability: New Insight on Theory, Design, and Applications. Chemical Reviews, 115, 8230-8293.
https://doi.org/10.1021/cr400083y
[11]  Berg, J.M., Eriksson, L.G.T., Claesson, P.M., et al. (1994) Three-Component Langmuir-Blodgett Films with a Controllable Degree of Polarity. Langmuir, 10, 1225-1234.
https://doi.org/10.1021/la00016a041
[12]  Vogler, E.A. (1998) Structure and Reactivity of Water at Biomaterial Surfaces. Advances in Colloid and Interface Science, 74, 69-117.
https://doi.org/10.1016/S0001-8686(97)00040-7
[13]  Yoon, R.H., Flinn, D.H. and Rabinovich, Y.I. (1997) Hy-drophobic Interactions between Dissimilar Surfaces. Journal of Colloid & Interface Science, 185, 363-370.
https://doi.org/10.1006/jcis.1996.4583
[14]  Patel, A.J., Varilly, P. and Chandler, D. (2010) Fluctuations of Water near Extended Hydrophobic and Hydrophilic Surfaces. The Journal of Physical Chemistry B, 114, 1632-1637.
https://doi.org/10.1021/jp909048f
[15]  Patankar, N.A. (2004) Transition between Superhydrophobic States on Rough Surfaces. Langmuir the ACS Journal of Surfaces & Colloids, 20, 7097-102.
https://doi.org/10.1021/la049329e
[16]  Pease, D.C. (1945) The Significance of the Contact Angle in Relation to the Solid Surface. The Journal of Physical Chemistry, 49, 107-110.
https://doi.org/10.1021/j150440a007
[17]  Gao, L. and Mccarthy, T.J. (2007) How Wenzel and Cassie Were Wrong. Langmuir, 23, 3762-3765.
https://doi.org/10.1021/la062634a
[18]  Drelich, J. and Chibowski, E. (2010) Superhydrophilic and Superwetting Surfaces: Definition and Mechanisms of Control. Langmuir, 26, 18621-18623.
https://doi.org/10.1021/la1039893
[19]  Gao, L. and Mccarthy, T.J. (2006) The “Lotus Effect” Explained:? Two Reasons Why Two Length Scales of Topography Are Important. Langmuir, 22, 2966-2967.
https://doi.org/10.1021/la0532149
[20]  Jin, M.H., Feng, X.J., Feng, L., et al. (2005) Superhydrophobic Aligned Polystyrene Nanotube Films with High Adhesive Force. Advanced Materials, 17, 1977-1981.
https://doi.org/10.1002/adma.200401726
[21]  Wang, S. and Jiang, L. (2007) Definition of Superhydrophobic States. Advanced Materials, 19, 3423-3424.
https://doi.org/10.1002/adma.200700934
[22]  Xu W, Song J, Sun J, et al. (2011) Rapid Fabrication of Large-Area, Corrosion-Resistant Superhydrophobic Mg Alloy Surfaces. ACS Applied Ma-terials & Interfaces, 3, 4404-4414.
https://doi.org/10.1021/am2010527
[23]  Peng, C., Chen, Z. and Tiwari, M.K. (2018) All-Organic Superhydrophobic Coatings with Mechanochemical Robustness and Liquid Impalement Resistance. Nature Materials, 17, 355-360.
https://doi.org/10.1038/s41563-018-0044-2
[24]  Pan, S., et al. (2018) Coatings Super-Repellent to Ultralow Surface Tension Liquids. Nature Materials, 17, 1040-1047.
https://doi.org/10.1038/s41563-018-0178-2
[25]  Washo, B.D. (1982) Highly Nonwettable Surfaces via Plasma Polymer Vapor Deposition. Polymers in Electronics, 47, 69-72.
[26]  Morra, M., Occhiello, E. and Garbassi, F. (1989) Contact Angle Hysteresis in Oxygen Plasma Treated Poly(Tetrafluor- oethylene). Langmuir, 5, 872-876.
https://doi.org/10.1021/la00087a050
[27]  Kuzminova, A., Shelemin, A., Kylián, O., et al. (2014) From Su-per-Hydrophilic to Super-Hydrophobic Surfaces Using Plasma Polymerization Combined with Gas Aggregation Source of Nanoparticles. Vacuum, 110, 58-61.
https://doi.org/10.1016/j.vacuum.2014.08.014
[28]  Erbil, H.Y., Demirel, A.L., Avci, Y. and Mert, O. (2003) Transformation of a Simple Plastic into a Superhydrophobic Surface. Science, 299, 1377-1380.
https://doi.org/10.1126/science.1078365
[29]  Lu, X.Y., Zhang, C.C. and Han, Y.C. (2004) Low-Density Polyethylene Superhydrophobic Surface by Control of Its Crystallization Behavior. Macromolecular Rapid Communications, 25, 1606-1610.
https://doi.org/10.1002/marc.200400256
[30]  Choi, H.J., Choo, S., Shin, J.H., et al. (2013) Fabrication of Superhydrophobic and Oleophobic Surfaces with Overhang Structure by Reverse Nanoimprint Lithography. The Journal of Physical Chemistry C, 117, 24354-24359.
https://doi.org/10.1021/jp4070399
[31]  Wang, J., Chen, X., Kang, Y., et al. (2010) Preparation of Superhydrophobic Poly(Methyl Methacrylate)-Silicon Dioxide Nanocomposite Films. Applied Surface Science, 257, 1473-1477.
https://doi.org/10.1016/j.apsusc.2010.08.075
[32]  Zhu, M.F., Zuo, W.W., Yu, H., et al. (2006) Su-perhydrophobic Surface Directly Created by Electrospinning Based on Hydrophilic Material. Journal of Materials Science, 41, 3793-3797.
https://doi.org/10.1007/s10853-005-5910-z
[33]  Tavana, H., Amirfazli, A. and Neumann, A. (2006) Fabrication of Superhydrophobic Surfaces of N-Hexatriacontane. Langmuir, 22, 5556-5559.
https://doi.org/10.1021/la0607757
[34]  Veeramasuneni, S., Drelich, J., Miller, J.D. and Yamauchi, G. (1997) Hydrophobicity of Ion-Plated PTFE Coatings. Progress in Organic Coatings, 31, 265-270.
https://doi.org/10.1016/S0300-9440(97)00085-4
[35]  Yamashita, H., Nakao, H., Takeuchi, M., et al. (2003) Coating of TiO2 Photocatalysts on Super-Hydrophobic Porous Teflon Membrane by an Ion Assisted Deposition Method and Their Self-Cleaning Performance. Nuclear Instruments & Methods in Physics Research. B, Beam Interactions with Materials and Atoms, 206, 898-901.
https://doi.org/10.1016/S0168-583X(03)00895-4
[36]  Taurino, R., Fabbri, E., Messori, M., et al. (2008) Facile Preparation of Superhydrophobic Coatings by Sol-Gel Processes. Journal of Colloid and Interface Science, 325, 149-156.
https://doi.org/10.1016/j.jcis.2008.05.007
[37]  Lu, S.X., Chen, Y.L., Xu, W.G., et al. (2010) Controlled Growth of Superhydrophobic Films by Sol-Gel Method on Aluminum Substrate. Applied Surface Science, 256, 6072-6075.
https://doi.org/10.1016/j.apsusc.2010.03.122
[38]  Feng, X., Feng, L., Jin, M., et al. (2004) Reversible Super-Hydrophobicity to Super-Hydrophilicity Transition of Aligned ZnO Nanorod Films. Journal of the American Chemical Society, 126, 62-63.
https://doi.org/10.1021/ja038636o
[39]  Feng, X., Zhai, J. and Jiang, L. (2005) The Fabrication and Switchable Superhydrophobicity of TiO2 Nanorod Films. Angewandte Chemie International Edition, 44, 5115-5118.
https://doi.org/10.1002/anie.200501337
[40]  Zhu, W., Feng, X., Feng L., et al. (2006) UV-Manipulated Wettability between Superhydrophobicity and Superhydrophilicity on a Transparent and Conductive SnO2 Nanorod Film: Building Bio-Inspired Smart Nanochannels. Chemical Communications, 26, 2753-2755.
https://doi.org/10.1039/b603634a
[41]  Wang, B. and Guo, Z.G. (2013) Superhydrophobic Copper Mesh Films with Rapid Oil/Water Separation Properties by Electrochemical Deposition Inspired from Butterfly Wing. Applied Physics Letters, 103, Article ID: 063704.
https://doi.org/10.1063/1.4817922
[42]  Zhang, L.B., Li, Y., Sun, J.Q., et al. (2008) Layer-by-Layer Fabrication of Broad-Band Superhydrophobic Antireflection Coatings in Near-Infrared Region. Journal of Colloid and Interface Science, 319, 302-308.
https://doi.org/10.1016/j.jcis.2007.11.020
[43]  Wang, J., et al. (2007) Fine Control of the Wettability Transition Temperature of Colloidal-Crystal Films: From Superhydrophilic to Superhydrophobic. Advanced Functional Materials, 17, 219-225.
https://doi.org/10.1002/adfm.200600101
[44]  Yang, Y., Li, X., Zheng, X., et al. (2017) 3D-Printed Biomimetic Super-Hydrophobic Structure for Microdroplet Manipulation and Oil/Water Separation. Advanced Materials, 2017, Article ID: 1704912.
https://doi.org/10.1002/adma.201704912
[45]  Li, S.H., Feng, L., Li, H.J., et al. (2003) Super-Hydrophobicity of Post-Like Aligned Carbon Nanotube Films. Chemical Journal of Chinese Universities, 24, 340-342.
[46]  Li, S., Li, H., Wang, X., et al. (2002) Super-Hydrophobicity of Large-Area Honeycomb-Like Aligned Carbon Nanotubes. Journal of Physical Chemistry B, 106, 9274-9276.
https://doi.org/10.1021/jp0209401
[47]  Wang, Y., Wang, W., Zhong, L., et al. (2010) Super-Hydrophobic Surface on Pure Magnesium Substrate by Wet Chemical Method. Applied Surface Science, 256, 3837-3840.
https://doi.org/10.1016/j.apsusc.2010.01.037
[48]  Yang, S., Yin, K., Wu, J., et al. (2019) Ultrafast Nano-Structuring of Superwetting Ti Foam with Robust Antifouling and Stability towards Efficient Oil-in-Water Emulsion Separation. Nanoscale, 11, 17607.
https://doi.org/10.1039/C9NR04381K
[49]  Li, X.P., Sun, Y.L., Xu, Y.Y. and Chao, Z.S. (2018) UV-Resistant and Thermally Stable Superhydrophobic CeO2 Nanotubes with High Water Adhesion. Small, 14, e1801040.
https://doi.org/10.1002/smll.201801040
[50]  Yin, K., Du, H., Dong, X., Wang, C., Duan, J.-A. and He, J. (2017) A Simple Way to Achieve Bioinspired Hybrid Wettability Surface with Mi-cro/Nanopatterns for Efficient Fog Collection. Nanoscale, 9, 14620-14626.
https://doi.org/10.1039/C7NR05683D
[51]  Nakajima, A., Abe, K., Hashimoto, K., et al. (2000) Preparation of Hard Super-Hydrophobic Films with Visible Light Transmission. Thin Solid Films, 376, 140-143.
https://doi.org/10.1016/S0040-6090(00)01417-6
[52]  Iimura, S., Nobutou, D., Manabe, K., et al. (2003) Man-nich-Type Reactions in Water Using a Hydrophobic Polymer-Supported Sulfonic Acid Catalyst. Chemical Communi-cations, 14, 1644.
https://doi.org/10.1039/b304343f
[53]  Fadeeva, E., Truong, V.K., Stiesch, M., et al. (2011) Bacterial Retention on Superhydrophobic Titanium Surfaces Fabricated by Femtosecond Laser Ablation. Langmuir, 27, 3012-3019.
https://doi.org/10.1021/la104607g
[54]  Truong, V.K., Webb, H.K., Fadeeva, E., et al. (2012) Air-Directed Attachment of Coccoid Bacteria to the Surface of Superhydrophobic Lotus-Like Titanium. Biofouling, 28, 539-550.
https://doi.org/10.1080/08927014.2012.694426
[55]  Zhang, J. and Seeger, S. (2011) Polyester Materials with Superwetting Silicone Nanofilaments for Oil/Water Separation and Selective Oil Absorption. Advanced Functional Materials, 21, 4699-4704.
https://doi.org/10.1002/adfm.201101090

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133