全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

深红色发光材料BaZnAl10O17:Cr3+的光致发光性能研究
Synthesis and Photoluminescent Properties of Deep-Red Emission Phosphor BaZnAl10O17:Cr3+

DOI: 10.12677/APP.2020.10431, PP. 246-256

Keywords: 深红色,光致发光,Cr3+离子,铝酸盐
Deep-Red
, Photoluminescence, Cr3+ Ion, Aluminate

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文采用高温固相法成功制备了新型铝酸盐基深红色发光材料BaZnAl10O17:Cr3+,通过XRD、光谱测量以及热衰减测量等系统表征了材料的晶体结构和发光性能。光谱研究表明,在562 nm激发下,发光材料呈现强烈的深红色窄发射峰,峰值为691 nm,归属于Cr3+在AlO6八面体格位的2E→4A2的辐射跃迁。在691 nm监控下,材料在405和562 nm有两个强吸收峰,分别对应于Cr3+4A24T1(4F)和4A24T2(4F)跃迁。在此基础上,本文结合物理模型讨论了Cr3+离子的荧光寿命和浓度猝灭机理。在应用方面,本文详细研究了发光材料的热稳定性能并讨论了其可能的热猝灭机理。测试结果表明,在150℃时,材料的发光强度依然保持在25℃时的53%,优于文献报道的同类pc-LEDs用发光材料SrMgAl10O17:Cr3+ (34.49%)及Ca3Al4ZnO10:Mn4+,Mg2+ (51%),由此说明深红色发光材料BaZnAl10O17:Cr3+在pc-LEDs等功能器件上具有良好的应用潜力。
Cr3+-activated aluminate-phosphors BaZnAl10O17:Cr3+ with emission in deep-red region are synthesized successfully by high temperature solid-state reaction. Their crystal structure and photoluminescent properties are characterized by XRD, photoluminescence spectroscopy, temperature-dependent emission spectra, etc. The excitation spectra of BaZnAl10O17:Cr3+ phosphors monitored at 691 nm, exhibit two broad bands peaked at 405 nm and 562 nm, which are corresponding to 4A24T1(4F) and 4A24T2(4F) transitions of Cr3+, respectively. Under the excitation of 562 nm, those phosphors display an intense narrow deep-red emission band centered at 691 nm, which can be attributed to the 2E→4A2 transition of Cr3+ incorporated in the AlO6 octahedral sitesofAl3+. The concentration-dependence lifetime and the concentration quenching mechanism of BaZnAl10O17:Cr3+ phosphors are discussed. The thermal stability of BaZnAl10O17:Cr3+ and the possible thermal quenching mechanism are discussed as well. It can be observed that the emission intensity of phosphors obtained in this work exhibit a mild decrease to 53% at 150?C comparing with that at 25?C, which is literally better than similar pc-LEDs phosphors, SrMgAl10O17:Cr3+ (34.49%) and Ca3Al4ZnO10:Mn4+, Mg2+ (51%) reported in the literature, indicating that our phosphors have a better thermal

References

[1]  Shen, L., Hu, C., Zhou, S., Mukherjee, A. and Huang, Q. (2013) Phase-Dependent Photoluminescence Behavior of Cr-Doped Alumina Phosphors. Optical Materials, 35, 1268-1272.
https://doi.org/10.1016/j.optmat.2013.01.022
[2]  Shao, Q., Ding, H., Yao, L., Xu, J., Liang, C. and Jiang, J. (2018) Photoluminescence Properties of a ScBO3:Cr3+ Phosphor and Its Applications for Broadband Near-Infrared LEDs. RSC Advances, 8, 12035-12042.
https://doi.org/10.1039/C8RA01084F
[3]  Zabiliute, A., Butkute, S., Zukauskas, A., Vitta, P. and Kareiva, A. (2014) Sol-Gel Synthesized Far-Red Chromium-Doped Garnet Phosphors for Phosphor-Conversion Light-Emitting Diodes that Meet the Photomorphogenetic Needs of Plants. Applied Optics, 53, 907-914.
https://doi.org/10.1364/AO.53.000907
[4]  Katayama, Y., Kobayashi, H. and Tanabe, S. (2015) Deep-Red Persistent Luminescence in Cr3+-doped LaAlO3 Perovskite Phosphor for in Vivo Imaging. Applied Physics Express, 8, Article ID: 012102.
https://doi.org/10.7567/APEX.8.012102
[5]  Han, Y.-J., Shi, L., Liu, H. and Zhang, Z.-W. (2019) A Novel Far Red-Emitting Phosphor SrMgAl10O17:Cr3+ for Warm w-LEDs. Optik, 195, Article ID: 162014.
https://doi.org/10.1016/j.ijleo.2018.11.166
[6]  Wu, Y., Chi, Z. and He, T. (2017) Codoping of Cr3+ in Y3Al5O12:Ce3+ Phosphors for Improving Color Rendering of White Light-Emitting Diodes. Journal of Materials Science: Materials in Electronics, 28, 14591-14595.
https://doi.org/10.1007/s10854-017-7323-6
[7]  Chi, N.T.K., Quang, N.V., Tuan, N.T., et al. (2019) Deep Red Emitting MgAl2O4:Cr3+ Phosphor for Solid State Lighting. Journal of Electronic Materials, 48, 5891-5899.
https://doi.org/10.1007/s11664-019-07358-5
[8]  Larson, A.C. and Dreele, R.B.V. (1994) GSAS: General Software Analysis System manual. Los Alamos National laboratory Report LAUR, 86-748.
[9]  Shannon, R.D. (1976) Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides. Acta Crystallographica Section A, Foundations of Crystallography, 32, 751-767.
https://doi.org/10.1107/S0567739476001551
[10]  Singh, V., Sivaramaiah, G., Rao, J.L., Sripada, S. and Kim, S.H. (2014) An Electron Paramagnetic Resonance and Optical Study of Cr Doped BaAl12O19 Powders. Ceramics International, 40, 9629-9636.
https://doi.org/10.1016/j.ceramint.2014.02.043
[11]  Kim, I.-W., Kaur, S., Yadav, A., et al. (2020) Structural, Luminescence and EPR Properties of Deep Red Emitting MgY2Al4SiO12:Cr3+ Garnet Phosphor. Journal of Luminescence, 220, Article ID: 116975.
https://doi.org/10.1016/j.jlumin.2019.116975
[12]  Oh, J.H., Eo, Y.J., Yoon, H.C., Huh, Y.-D. and Doa, Y.R. (2016) Evaluation of New Color Metrics: Guidelines for Developing Narrow-Band Red Phosphors for WLEDs. Journal of Materials Chemistry C, 4, 8326-8348.
https://doi.org/10.1039/C6TC02387H
[13]  Zhou, Q., Dolgov, L., Srivastava, A.M., et al. (2018) Mn2+ and Mn4+ Red Phosphors: Synthesis, Luminescence and Applications in WLEDs. A Review. Journal of Materials Chemistry C, 6, 2652-2671.
https://doi.org/10.1039/C8TC00251G
[14]  Tanabe, Y. and Sugano, S. (1954) On the Absorption Spactra of Complex Ions II. Journal of the Physical Society of Japan, 9, 753.
https://doi.org/10.1143/JPSJ.9.753
[15]  Ning, L., Zhou, C., Chen, W., et al. (2015) Electronic Properties of Ce3+-Doped Sr3Al2O5Cl2: A Combined Spectroscopic and Theoretical Study. The Journal of Physical Chemistry C, 119, 6785-6792.
https://doi.org/10.1021/jp512331b
[16]  Blasse, G. (1968) Energy Transfer in Oxidic Phosphors. Physics Letters A, 28, 444-445.
https://doi.org/10.1016/0375-9601(68)90486-6
[17]  Dexter, D.L. (1953) A Theory of Sensitized Luminescence in Solids. The Journal of Chemical Physics, 21, 836-850.
https://doi.org/10.1063/1.1699044
[18]  Van Uitert, L.G. (1967) Characterization of Energy Transfer Interactions between Rare Earth Ions. Journal of the Electrochemical Society, 114, 1048.
https://doi.org/10.1149/1.2424184
[19]  McKittrick, J., Shea-Rohwer, L.E. and Green, D.J. (2014) Review: Down Conversion Materials for Solid-State Lighting. Journal of the American Ceramic Society, 97, 1327-1352.
https://doi.org/10.1111/jace.12943
[20]  Chen, H., Lin, H., Huang, Q., et al. (2016) A Novel Double-Perovskite Gd2ZnTiO6:Mn4+ Red Phosphor for UV-Based w-LEDs: Structure and Luminescence Properties. Journal of Materials Chemistry C, 4, 2374-2381.
https://doi.org/10.1039/C6TC00313C
[21]  Sankarasubramanian, K., Devakumar, B., Annadurai, G., Sun, L., Zeng, Y.-J. and Huang, X. (2018) Novel SrLaAlO4:Mn4+ Deep-Red Emitting Phosphors with Excellent Responsive-ness to Phytochrome PFR for Plant Cultivation LEDs: Synthesis, Photoluminescence Properties, and Thermal Stability. RSC Advances, 8, 30223-30229.
https://doi.org/10.1039/C8RA06356G
[22]  Sun, L., Devakumar, B., Liang, J., Wang, S., Sun, Q. and Huang, X. (2019) Simultaneously Enhanced Far-Red Luminescence and Thermal Stability in Ca3Al4ZnO10:Mn4+ Phosphor via Mg2+ Doping for Plant Growth Lighting. Journal of Alloys and Compounds, 785, 312-319.
https://doi.org/10.1016/j.jallcom.2019.01.177
[23]  Bhushan, S. and Chukichev, M.V. (1988) Temperature Dependent Studies of Cathodoluminescence of Green Band of ZnO Crystals. Journal of Materials Science Letters, 7, 319-321.
https://doi.org/10.1007/BF01730729
[24]  Zhou, Z., Zheng, J., Shi, R., et al. (2017) Ab Initio Site Occupancy and Far-Red Emission of Mn4+in Cubic-Phase La(MgTi)1/2O3 for Plant Cultivation. ACS Applied Materials & Interfaces, 9, 6177-6185.
https://doi.org/10.1021/acsami.6b15866

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133