全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

金纳米双锥与金纳米棒颗粒纵向表面等离激元共振特性的数值比较研究
Numerical Comparison of Longitudinal Surface Plasmon Resonance Characteristics of Gold Nanobipyramid and Gold Nanorod

DOI: 10.12677/APP.2020.104030, PP. 239-245

Keywords: 金纳米双锥,金纳米棒,纵向表面等离激元共振
Gold Nanobipyramid
, Gold Nanorod, Longitudinal Surface Plasmon Resonance

Full-Text   Cite this paper   Add to My Lib

Abstract:

金纳米双锥与金纳米棒颗粒因其自身的各向异性在红外谱段均呈现出显著的纵向表面等离激元共振特性。本文利用时域有限差分方法数值研究了金纳米双锥与金纳米棒的纵向表面等离激元共振特性,并对两者在纵向表面等离激元的可调谐性以及局域电场增强方面进行了比较。研究结果表明,相比于金纳米棒结构,金纳米双锥不仅在纵向表面等离激元共振峰的调控效率及波段调控范围上具有优势,而且还具有局域化程度更高、增强特性更为显著的电场分布。这一结果将对金纳米双锥与金纳米棒颗粒在光学传感、表面增强拉曼及光热转换治疗等领域的应用起指导作用。
Both the gold nanobipyramid and the gold nanorod exhibit significant longitudinal surface plas-mon resonance characteristics in the infrared spectrum due to their anisotropy. In this paper, the finite-difference time-domain method is used to numerically study the longitudinal surface plasmon resonance characteristics of gold nanobipyramid and gold nanorod structures and further compare the tunability of longitudinal surface plasmon resonance and local field enhancement. The results show that compared with gold nanorod structures, gold nanobipyramid have greater tunability of longitudinal surface plasmon resonance and stronger local field enhancements, which will be beneficial to gold nanobipyramid and gold nanorod application in optical sensing, surface-enhanced Raman scattering and infrared photothermal treatment.

References

[1]  Daniel, M.C. and Astruc, D. (2004) Gold Nanoparticles: Assembly, Supramolecular Chemistry, Catalysis, and Nanotechnology. Chemical Reviews, 104, 293-346.
https://doi.org/10.1021/cr030698+
[2]  Willets, K.A. and Van Duyne, R.P. (2007) Localized Surface Plasmon Resonance Spectroscopy and Sensing. Annual Review of Physical Chemistry, 58, 267-297.
https://doi.org/10.1146/annurev.physchem.58.032806.104607
[3]  Kelly, K.L., Coronado, E., Zhao, L.L. and Schatz, G.C. (2003) The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment. Journal of Physical Chemistry B, 107, 668-677.
https://doi.org/10.1021/jp026731y
[4]  Grabar, K.C., Freeman, R.G., Hommer, M.B. and Natan, M.J. (1995) Preparation and Characterization of Au Colloid Monolayers. Analytical Chemistry, 67, 735-743.
https://doi.org/10.1021/ac00100a008
[5]  Sajanlal, P.R., Sreeprasad, T.S., Samal, A.K. and Pradeep, T. (2011) Anisotropic Nanomaterials: Structure, Growth, Assembly, and Functions. Nano Reviews, 2, 5883.
https://doi.org/10.3402/nano.v2i0.5883
[6]  Kou, X., Zhang, S., Tsung, C., Yeung, M.H., Shi, Q., Stucky, G.D., Sun, L., Wang, J. and Yan, C. (2006) Growth of Gold Nanorods and Bipyramids Using CTEAB Surfactant. Journal of Physical Chemistry B, 110, 16377-16383.
https://doi.org/10.1021/jp0639086
[7]  Zuloaga, J., Prodan, E. and Nordlander, P. (2008) Quantum Plasmonics: Optical Properties and Tunability of Metallic Nanorods. ACS Nano, 4, 5269-5276.
https://doi.org/10.1021/nn101589n
[8]  Zijlstra, P., Paulo, P.M. and Orrit, M. (2012) Optical Detection of Single Non-Absorbing Molecules Using the Surface Plasmon Resonance of a Gold Nanorod. Nature Nanotechnology, 7, 379-382.
https://doi.org/10.1038/nnano.2012.51
[9]  Liao, Q., Mu, C., Xu, D.S., Ai, X.C. and Zhang, J.P. (2009) Gold Nanorod Arrays with Good Reproducibility for High-Performance Surface-Enhanced Raman Scattering. Langmuir: The ACS Journal of Surfaces and Colloids, 25, 4708-4714.
https://doi.org/10.1021/la8036555
[10]  Johnson, C.J., Dujardin, E., Davis, S.A., Murphy, C.J. and Mann, S. (2002) Growth and Form of Gold Nanorods Prepared by Seed-Mediated, Surfactant-Directed Synthesis. Journal of Materials Chemistry, 12, 1765-1770.
https://doi.org/10.1039/b200953f
[11]  Kou, X., Ni, W., Tsung, C.K., Chan, K., Lin, H.Q., Stucky, G.D. and Wang, J. (2007) Growth of Gold Bipyramids with Improved Yield and Their Curvature-Directed Oxidation. Small, 3, 2103-2113.
https://doi.org/10.1002/smll.200700379
[12]  Wu, X., Mu, L., Chen, M., Liang, S., Wang, Y., She, G. and Shi, W. (2019) Bifunctional Gold Nanobipyramids for Photothermal Therapy and Temperature Monitoring. ACS Applied Bio Materials, 2, 2668-2675.
https://doi.org/10.1021/acsabm.9b00344
[13]  Wang, W., Peng, Y., Jiang, W., Xin, T., Tianji, L., Yanbo, L., Eric, A., Huanyang, C., Qin, Z.Z. and Zhiming, W. (2018) Size-Dependent Longitudinal Plasmon Resonance Wavelength and Extraordinary Scattering Properties of Au Nanobipyramids. Nanotechnology, 29, Article ID: 355402.
https://doi.org/10.1088/1361-6528/aacb5d
[14]  Chen, H., Shao, L., Li, Q. and Wang, J. (2013) Gold Nanorods and Their Plasmonic Properties. Chemical Society Reviews, 42, 2679-2724.
https://doi.org/10.1039/C2CS35367A
[15]  Chow, T.H., Li, N., Bai, X., Zhuo, X., Shao, L. and Wang, J. (2019) Gold Nanobipyramids: An Emerging and Versatile Type of Plasmonic Nanoparticles. Accounts of Chemical Research, 52, 2136-2146.
https://doi.org/10.1021/acs.accounts.9b00230
[16]  Johnson, P.B. and Christy, R. (1972) Optical Constants of the Noble Metals. Physical Review B, 6, 4370.
https://doi.org/10.1103/PhysRevB.6.4370
[17]  Jain, P.K., Lee, K.S., El-Sayed, I.H. and El-Sayed, M.A. (2006) Calculated Absorption and Scattering Properties of Gold Nanoparticles of Different Size, Shape, and Composition: Applications in Biological Imaging and Biomedicine. Journal of Physical Chemistry B, 110, 7238-7248.
https://doi.org/10.1021/jp057170o
[18]  Xie, H., Kong, F.M. and Li, K. (2009) The Electric Field Enhancement and Resonance in Optical Antenna Composed of Au Nanoparicles. Journal of Electromagnetic Waves and Applications, 23, 534-547.
https://doi.org/10.1163/156939309787612419

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133